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A way is indicated to construct a general solution of the Einstein equations with a sin-
gularity, starting from a previously known solution of a lesser degree of generality. A
qualitative description is given of the evolution of the metric in this general solution to-
wards the singularity, which is of a complex, oscillatory nature.

a =t~' (2)

with

pg+p2+p3 =p,'+p, '+p, ' =1.

(One of the numbers p„p„p3 is negative; let it be
P,.) The vectors 1, m, n and the numbers P„P„P,
are functions of the space coordinates. We intro-
duce also the notation

X = (1 ~ curl 1)/v, p = (m. curl m)/v,

v=(n curl n)/v, v =I ~ mxn, (4)

In this paper we return to a question which we
discussed extensively before, ' the question of
whether there exists a general solution of the
Einstein equations with a singularity. Recall
that the statement of the problem consists of the
search for the limiting form (in the neighborhood
of the singularity) of the broadest class of solu-
tions containing a physical singularity; the de-
gree of generality is defined by the number of
physically different arbitrary functions of the
space coordinates contained in the solution. A

general solution is one composed of a sufficient
number of arbitrary functions to specify arbitrary
initial conditions at a given moment of time (four
for an empty universe, eight for the universe
with matter). Note that what we have in mind is
a physical singularity —infinite density of matter
or (in an empty space) infinite curvature invari-
ants.

Our previous investigations' have led us to the
conclusion that the most general properties of
the cosmological solutions with respect to their
singularities manifest themselves already in the
case of empty space, and that matter does not
change these properties in a qualitative way.
These investigations also provided a class of
solutions which contain only one arbitrary func-
tion less than is necessary for the general case.
These solutions represent a generalization of the
homogeneous Kasner solution and have the form

ds =d t' - (a l„le+ b2m„m8+ c'q„n& )dx" dx8, (1)

where each mathematical expression is con-
structed as though x', x', x' were Cartesian co-
ordinates.

Apart from the "natural" conditions, imposed
on the coordinate functions in (1) by the equa-
tions R, =0, it turned out to be necessary to
impose also an additional condition,

X=0, (5)

for that one of the vectors l, m, n which is as-
sociated with the negative power of t. It is just
this condition which leads to the "loss" of one
arbitrary function from the solution.

A general solution is, by definition, completely
stable: It does not change its character under
application of any perturbation or, equivalently,
under any change of initial conditions. But for
the solution (1), (2), the presence of the restric-
tion (5) causes an instability with respect to per-
turbations which violate this condition. Under
the influence of such a perturbation the model
must evolve into another regime which ipso facto
will already be quite general. Of course in this
process the perturbation ought not to be consid-
ered as small: The transition to the new regime
lies outside the domain of infinitesimal pertur-
bation s.

The equations which determine the functions
a, b, and c in the metric (1) are (cf. Ref. 1)

R.' =(a/a)+ (bib)+ (clc) = o;

Rq = [(abc) /abc]+ (A2a'/2b'c') = 0,

R„"= [(abc) /abc]-(X'a'/2b'c') = 0,

R = [(abc) /abc]-(A a /2b2c2) =0.

(The dots denote differentiation with respect to
t. ) Apart from the principal terms -t ' which
lead to (2) with the conditions (3), terms of a
still higher power in 1/t [-t '" ' ~'] also are re-
tained here. It is just to eliminate these latter
terms that the additional constraint (5) had to be
introduced. And it is just these terms, when
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x(-P„P2+2P»ps+ 2P ) (9)

if, initially, p, & p, &p„p, & 0, then p, ' & p, ' & p, ',
P~'& 0. The negative power of t is transferred
from the 1 to the m direction, the previously de-
creasing function b begins to increase, and the
increasing function a begins to decrease.

It is convenient to present the substitution law

(9) with the aid of the parametrization

p, (u) = -u/(1+ u+ u'),

p„(u) = (1+u)/(1+u+u'),

P„,(u) =u(1+u)/(1+u+u'), (10)

where the parameter u assumes values in the
region u~ 1. If u&1, then it can be reset into
the region u & 1 by means of the relations

Pg( / I)uP$( ) u$P$( /I)uPy[g (u)

Pyyg(1/u) =Pyg(u).

Now the rule (9) is formulated as follows: If p,
=Pr(u), P. Pi((u), andP =Peart(u), then

P, '
=Pry (u-l), P, ' =P,(u-l),

P3'=Pair(u (12)

This process of the replacement of "Kasner-
like epochs" with a bouncing of the negative pow-
er of time from one direction to another (men-
tioned already in Ref. 2) is the key to an under-
standing of the character of the evolution of the

switched on, which represent that perturbation
whose influence is to be followed. [With p, & 0
or P, & 0, instead of the terms in X', the analo-
gous terms in p' or v ought to be included in
(7).] Of course in the process of evolution of the
perturbation, the quantity A. becomes dependent
on time, and hence additional terms appear in
the Eqs. (6) and (7). But the evaluation of A. with
the help of the equation RJ"' =0 shows that these
terms can be neglected.

By the substitution a =e, 5 =e~, c =e&, dt =abed~,
Eqs. (7) are reduced to

n „=-(2&')8',
These simple equations must be solved with the
initial conditions at 7'- ~: &, =p» p, ~p, , r, =p,
[the initial metric (1), (2)]. The solution shows
that after a certain period of strong influence
the perturbation is damped and we return (at v
—-~) to a metric of the form (1), (2), but with
the new power labels

(p, ',p, ', p, ') = [1/(1+ 2p, )]

metric toward the singularity.
The successive repla. cements (12), with the

negative power bouncing from a to b and back,
continue until u becomes less than one. The
value u & 1 is reset into u & 1, according to (11).
The next series of replacements will bounce the
negative power between c and a (or c and b), and
so on. With an arbitrary (irrational) initial value
of u, this process of replacements will continue
indefinitely, and acquires a stochastic character.
Let w (x) be the probability for the nth series of
u values to end with a value u =x & 1. It can be
shown that when n - it tends to a stationary dis-
tribution w(x) =1/W2(1+x), which does not de-
pend on the initial conditions. ' The length of
each successive series is determined by the
integer part of 1/x, and the probability W(k) for
a series to be of a length k for large k is W(k)
= I/&2k'. Hence the mean value of k diverges
logarithmically, i.e., in successive series of re-
placements a large portion of the u values will be
very large, which means (p„p„p,) values near
to (0, 0, 1).

The qualitative meaning of these regularities in
the replacements is the following: The evolution
of the metric proceeds through successive peri-
ods (eall them eras) which condense towards t =0.
During every era the spatial distances in two di-
rections oscillate, and in the third direction de-
crease monotonically. In the transition from one
era to the next the direction of monotonic de-
crease is bounced over to another axis. This
monotonic decrease in successive eras proceeds,
for long periods of time, according to a law
which approximates closely to -t [i.e. , the met-
ric labels are close to (0, 0, 1)]; but still, at the
end of each era, the metric swerves away from
this Limit, without ever reaching it.

In the exact solution of the equations, the la-
bels (p„p„p,) lose their literal meaning, of
course, and only the described qualitative prop-
erties persist. But there is a need for a special
elucidation of the question of the approach of the
solution to the metric with the (0, 0, 1) labels,
since the singularity in this metric in itself is
not physica, l (the geometrical meaning of such a
metric was explained in Ref. 1, and its analytical
construction was given by Belinsky and Khalat-
nikov ). This question disturbed us for a long
time in connection with the fear that some small
effect in the equations might divert the evolution
of the metric precisely into (0, 0, 1) with a con-
sequent disappearance of the singularity. It is
to be added that with two of the numbers (p„p„
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p, ) being small and thus close to each other, one

may question the validity of those qualitative
properties of the model at which we arrive by
consideration of the perturbations, character-
ized by only one parameter.

However these doubts are removed by an ana-
lytical investigation of the simplest ca.se of A. = p
= v =const (the homogeneous model); this case
was considered by one of us jointly with Belin-
sky, ' and also by Misner. ' The quantity (say, c)
which decreases monotonically during a long era
becomes small in comparison with a and b. The
analytical consideration of the above case con-
firms that such evolution cannot last indefinitely;
the decreasing function c begins finally to in-
crease, and the transition to the next era begins.
It should be added that this property persists
also in the general representation of the metric
during an era (not subject to the assumption of
& = p = v = const), which has been constructed in
an analytical form by Belinsky and Khalatnikov6

and contains a complete required set of arbitrary
functions of the space coordinates.

It should be mentioned that this latter repre-
sentation contains functions which are periodic
with respect to one coordinate. This suggests
that there might be some sort of general connec-
tion between the existence of a singularity and
closure of the universe (note that the particular
model with X =p, = v=const is closed). This ques-
tion requires, o'f course, a special investigation.

The cha, racter of the singularity in this general
solution opens new vistas for cosmological ap-
plications of the theory. Most important appears
to be a property of the model pointed out by
Misner'. the opening of the light horizons (which
motivated the appropriate nickname of "Mixmas-
ter universe" ).

Also, new light is cast on the problem of the
gravitational collapse of nonspherical bodies.
The final stage of such a collapse may well be a
singularity of this sa.me type.

It remains to make some remarks on the con-
nection of the present results with our earlier
work, which led us previously to infer that a
singularity is absent from the general solutions. '
We do this also with the aim of bringing to an
end a prolonged discussion (see, e.g. , Ref. 7)
which over the last few years has become in-
creasingly pointless.

Since there exists no systematic method for
examining the singularities of the solutions of
the Einstein equations, our search for increas-
ingly more general solutions of this kind pro-

ceeded essentially by trial and error. A nega-
tive result from such a procedure could of course
never be completely conclusive in itself; con-
struction of a new solution with the required
generality reverses the conclusion without affect-
ing the results pertaining to the concrete solu-
tions considered previously. A heuristic notion,
which served as a guiding principle in our search,
was the conviction that if the existence of a singu-
larity is a general property of solutions, then
there must exist indications of this based only on
the most general properties of the Einstein equa-
tions themselves (although these indications may
be insufficient by themselves to reveal the nature
of the singularity). The only indication of this
kind known at the time of our earlier work was
the nullification of the metric determinant as a
consequence of the equation R,'=0 in a synchron-
ous reference system. But this indication dis-
appeared after it became clear that it was due

purely to the geometrical intersection of the
time-coordinate lines in the synchronous refer-
ence system. It was just this circumstance which
we had in mind when we wrote that, by that very
fact, the grounds for the existence of a singulari-
ty. in a general solution essentially disappear.
However the situation has changed since the dis-
covery, by Penrose' (and later by Hawking' and
Geroch"), of new theorems which reveal a con-
nection between the existence of a singularity (of
an unknown type) and some very general proper-
ties of the equations, which bear no relation to
the choice of reference system. "

The new developments finally clarify the prob-
lem of singularities in general solutions and re-
move all previous contradictions.
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Using the quoted p -to-p ratio obtained from the Berne-CERN-Fribourg neutrino ex-
periment, the upper limit of C~ was estimated to be of the order of 5C y, where C y is
the universal vector-coupling constant of P decay, and C~ characterizes the coupling
strength of s, four-fermion weak interaction vertex only allowed by a multiplicative lep-
ton-number conservation law.

As a result of the recent CERN high-energy neutrino experiment, ' additional remarks can be made
on the form of the lepton-number conservation law using the quoted p '-to- p. ratio. All present ex-
perimental evidence is consistent with the existence of either (A) an additive conservation law of mu-
onic and electronic lepton numbers, in which the sums QL„and gL, are separately conserved, or
(B) a multiplicative conservation law" in which only the sum Q(L „+L,) and the sign (-1)~~& are
separately conserved. U the p, -e conservation law should take the multiplicative form, one would ex-
pect an overall production of two positive muons in the CERN experiment' via the double process

+ ~II ~ ~tf +Z+ g++ ~++e +~~

where coherent scattering of the virtual charged leptons from the Coulomb field of a target nucleus,
zA, dominates Reaction (1).

Process (1) can be described in the lowest approximation of the weak and electromagnetic interac-
tions by the sum of the two diagrams (a) and (b) of Fig. 1. For a zero-spin target, the total cross sec-
tion is given by'

d („., -) F(q') g...T..(p+p'). (p+p'). d'p'
[(kp)'-k'p'1 '" (2~)'2p ' '

where F(q') =F(0) is the nuclear form factor of the nucleus (with q =P-P'), and T» is a tensor de-
scribing the upper vertices of Fig. 1. From the gauge-invariance requirements we obtain

T„,=a[(kq)b&, +q'k „k,/(kq)-k „q,-k,q „]+b[qab „,-q„q, ],

where a and b are scalar functions.
It can be readily verified that as q'-0 and (kq) «(kp) the quantity a reduces to o~&/(kq) and the b de-
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FlG. 1. The relevant Feynman diagrams of process
(1). k, k', ~&, etc. are the four-momenta of the corre-
sponding particles. (C~) and (e) indicate the coupling
strength of the corresponding vertex.
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