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We calculate the high-energy amplitude in quantum electrodynamics and scalar elec-
trodynamics, and find that the Pomeranchon is a moving Regge pole near J = ~ when t is
equal to or near the two-particle threshold, and is a fixed branch point at J= 1 for t -0.
This is due to the promotion from 1 to 2 for the power of s of the tower-diagram ampli-
tudes at threshold. The Gribov paradox is thereby automatically resolved.

Over the past two years, we have carried
through a field-theoretic investigation' 3 on the
high-energy behavior of scattering amplitudes
near the forward direction, i.e. , in the region
s —~ with t fixed at a nonpositive value, where
s is the square of the c.m. energy and t is the
negative of the momentum-transfer squared. In
this Letter, we shall consider these amplitudes
in the region s - ~ with t fixed at a positive value.

The contents of this Letter are first summa-
rized as follows: (i) At t =4k.', where X&0 is the
mass of the exchanged vector meson ("photon"),
there is a promotion for the power of s from 1
to 2. For example, the scattering amplitude
corresponding to the diagrams in Fig. 1(a) is
proportional to s for t 4A.', but is proportional
to s"' at t= 4k.'. This promotion also occurs for
other diagrams with two-photon cuts in the t
channel. Some additional examples are shown in
Figs. 1(b) and 1(c). These diagrams will be
called tower diagrams. (ii) The impact-diagram
rules can be generalized to the region t -4X'.
Applying these rules to the tower diagrams of
Figs. 1(a)-1(c), we obtain the corresponding
amplitude explicitly. One particular result is
that the amplitude for the sum of N loop diagrams
in Fig. 1(c) is of the order of s"$(lns) at t=4A$.
[This is to be compared with s(lns) for t &4K'. ]
Similar considerations apply to other processes
a+b-a'+b' (iii) Becaus. e of the phenomenon of
promotion, other diagrams, such as those illus-
)rated on Fig. 1(d), can no longer cancel the
diagrams in Fig. 1(c) as they do in the region
t «0 to preserve unitarity. Put in another way,
the scattering amplitude does not have to satisfy
the Froissart bound4 when t&0, and the tower
diagrams in Figs. 1(a)-1(c) dominate over those
in Fig. 1(d) when t is at or near 4A$. (iv) Sum-
ming up the high-energy amplitudes for the tower
diagrams in the region t at or near 4A', we find

(b)

etc. etc

(c)

FIG. 1. Some relevant diagrams for electron-elec-
tron scattering. The & channel is from left to right,
and the t channel is from top to bottom.

that the scattering amplitude for the process
a+0 -a'+b' is of the form

1~$~2+ K(1 y f)g $f $$ ebb' (1)

where I" (I ) is a function of a and a' (b and b')
only and ~ is proportional to e . This means that
the leading singularity in the J plane is a moving
Regge pole located to the right of J= 2 as t is
near 4A.'. (v) The Gribov paradox, 'which forbids
the scattering amplitude from taking the form
sf(t), is automatically resolved.

Having summarized the results, let us begin
the discussion by observing that an example of
promotion had already been found in potential
scattering. ' Consider, for example, the Schro-
dinger equation with a Yukawa potential -Ge /
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x, 1» Q&0. In this case the leading Regge pole
is given by the perturbation series~

a(k, ) —-1+iG/(2k„), (2)

where k, is the momentum of the particle. Thus
the leading Regge pole is located near -1 in the
l plane, if the potential is weak. The perturba-
tion series (2) breaks down at the threshoM k,
= 0, and it has been found that at k, = 0, there is
a Regge pole located at'

o(0) - -2+2G. (3)

We have further shown' that (2) and (3) corre-
spond to the same Regge pole; therefore there is
a promotion for the leading pole from the neigh-
borhood of l = -1 to that of l = —2, if the coupling
is weak. This promotion occurs when ik, i is
within G. As G increases, the leading Regge
pole moves further to the right.

This promotion also occurs for the g3 theory.
Consider the ladder diagrams in the limit s —~,
t fixed. Then promotion occurs for each individ-
ual diagram. Specifically, it is well known that
the diagram of N+ I rungs gives the amplitude'

ÃN - -g's '(lns) [I(t)] /N!, (4)

I (t) = (g/4l-T)'f dx[tx(1-x)-1+ i&] (5)

In the above, g is the coupling constant, and the
mass of the scalar mesons is chosen to be unity.
At t =4, the right side of (5) is a divergent inte-
gral. This does not mean that %& does not exist
at / =4. It simply means that the asymptotic
form (4) does not hold at t =4. To obtain the
asymptotic form of %& at t = 4, we must start
again from the exact expression for %&, set
t =4, and take the Iimit s -~. %e get, for / =4,

—'pg'~ + ')2 '~ [(N—1)!] Is

x (lns) (6)

Comparing (4) with (6), we see that the power of
s for the scattering amplitude of an individual
diagram is promoted from -1 for t&4 to -2 for
t=4. Summing over all N, we get, for t=4, the
amp1itude

g4(32) ls -1/2 + g2(321r)

Thus, similar to the potential-scattering case,
the leading Regge pole is promoted from the
neighborhood of l=-2 to that of l=-1, if the
coupling constant is small.

This promotion, while of academic interest in

potential scattering and g3 theory, is very sig-
nificant in quantum electrodynamics. This is
because it throws light on the nature of the Pom-
eranchon. We recall that in quantum electro-
dynamics, there are Feynman diagrams which
give amplitudes of the order of s(lns), N=1, 2,
3, ~ in the limit s-~, t fixed. The lowest
order Feynman diagrams which give an ampli-
tude proportional to s(lns) are the N electron-
loop diagrams illustrated in Fig. 1(c). We have
obtained the leading term for corresponding
scattering amplitude in the limit s -~, t fixed. "
If we sum over these leading terms, we obtain,
at the forward direction t=0, a result of the
order of is'+ '/lns, where

a= 11o. w/32,

in massive quantum electrodynamics, and

a = 5a2w/32,

in massive scalar electrodynamics. This result
violates s-channel unitarity and is therefore
physically meaningless. Since the perturba'. ion
series can always be made manifestly unitary,
it is possible to "unitarize" the scattering ampli-
tude by including more Feynman diagrams. In
particular, to unitarize the amplitude from the
tower diagrams of Figs. 1(a)-l(c), we must in-
clude the diagrams like those illustrated in Fig.
l(d). The amplitudes from the diagrams of Fig.
1(d) cancel those of Figs. 1(a)-1(c) and unitarity
is preserved. This point has been discussed
previously. " This is no assurance, however,
that such a procedure yields the correct asymp-
totic amplitude, which remains one of the most
difficult and challenging quantities to calculate
in the field of hi.gh-energy physics.

Such complications disappear, however, when
t is at or near 4A'. This is because the ampli-
tudes from the tower diagrams of Fig. 1(c) are
promoted from s to s'" (logarithmic factors un-
changed), while those from Fig. 1(d) remain to
be of the order of s. Thus the former amplitudes
dominate over the latter, and cancellation cannot
occur.

The amplitudes from the tower diagrams of
Fig. 1(c) are difficult to treat with the conven-
tional Feynman method. We have generalized
the impact-diagram method to handIe this case,
and the amplitude for the sum of the N-loop
tower diagrams for a+b -a'+b' is then found to
be, at t=4A. ,
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pole is in the neighborhood of J = I, at t = (M+ X)'.
On the other hand, no promotion occurs on a
three-particle threshold.

Finally, we mention that this complicated be-
havior for the Pomeranchon causes similar com-
plications in all other Regge trajectories. This
has obvious experimental implications which can
be easily tested.

We wish to thank Professor C. ¹ Yang for dis-
cussions.

FIG. 2. Schematic plot for the Pomerancbon. The
dotted line represents the position of the branch point,
and the solid line represents the position of the P
Regge pole.

Summing up all N, we obtain (1).
We discuss the significance of (1) and (10).

Eq. (1) shows that when t is near 4A', the leading
singularity in the J plane comes from the tower
diagrams and is a moving Regge pole located to
the right of J= 2. In hadron physics, where the
coupling constant is strong, this Regge pole
should be further to the right, and makes a
bound state if it passes J=2. Our previous cal-
culations" indicate that for t ~ 0, the leading
singularity in the J plane, coming from all the
diagrams of Fig. 1, is a fixed branch point at
J=1. This branch point starts to move when t
is positive, and for some t between 0 and 4A.

' a
Regge pole emerges from the second sheet
through the branch point and moves ahead. " At
t= 4k.', this Regge pole is in the neighborhood of
J= 2 if the coupling is weak, and is further to
the right for strong couplings. This is schemat-
ically plotted in Fig. 2.

Gribov argued that the scattering amplitude
cannot be of the form sf (t) when t is above the
elastic threshold. Apparently, the promotion
phenomenon guarantees the scattering amplitude
to be at least of the order of ss at t=4A. . Thus
Gribov's paradox is trivially resolved.

Promotion always occurs when t is at a two-
body threshold. What we have found here is a
diagrammatic way to study the promotion. For
instance, our argument shows that the diagrams
which generate the fermion Regge pole" are
promoted from s'~2 to s at t= (M+X)2, where M
is the mass of the fermion. Thus the fermion
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