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Calculations are presented for the properties of the three-nucleon system below the
three~body breakup threshold, using simple, static, central potentials which fit the
s-wave scattering lengths and effective ranges for nucleon-nucleon scattering.

In this Letter we present a number of theoret-
ical results concerning the low-energy proper-
ties of the three-nucleon system. These results
were obtained by assuming that the nucleons in-
teract via pairwise square-well potentials in the
singlet and triplet spin states; the depths and
radii of the potentials were adjusted to reproduce
the low-energy behavior of the (singlet and trip-
let) two-nucleon systems. Specifically, we cal-
culated the triton and He?® binding energies, the
rms radii of the protons and neutrons in these
nuclei, their eiectromagnetic charge form fac-
tors, and the low-energy doublet and quartet n-d
scattering phase shifts. All of these theoretical
numbers were found to be in surprisingly good
agreement with the experimental values. This
agreement is particularly interesting in the case
of the triton binding energy and the doublet n-d
scattering, both of which have been shown to be
exceptionally sensitive theoretically to the de-
tails of the assumed interaction. After present-
ing our results we discuss their possible signifi-
cance.

For all calculations we assumed equal masses

for proton and neutron and took #%2/M =41.47 MeV
fm2. Purely central forces were used for the
nucleon-nucleon interactions and in line with this
we have considered only states of the three-nu-
cleon system with total orbital angular momen-
tum L=0. The radii and potential depths of the
two-body square wells were determined by fitting
the latest values of the scattering lengths and
effective ranges for the 'S, and 35, n-p scatter-
ing, as given by Wilson.! For the singlet state
we found V;=14.017 MeV, R;=2.5895 fm, which
correspond to the scattering parameters a;
=-23.714 fm, 7,,=2.704 fm. In the triplet state
the potential parameters are V,=34.406 MeV,
R,=2.0719 fm, obtained by using a,=5.425 fm,
¥5,=1.749 fm.

The three-nucleon bound-state calculations
were done using the method of six-dimensional
harmonics. Taking the center of mass stationary
at the origin, the kinetic energy operator can be
written in the form V,2+V, % where £=2)V?
x[3(F,+F,)~F,], 7= ()V?[F,~-F,] are the usual
Jacobian coordinates. The orbital part of the
wave function is expanded as a sum of products
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of radial functions, depending on a single length
coordinate p=[¢2+7n?] Y2, and a complete orthog -
onal set of harmonic functions depending on five
angles. The harmonics are eigenfunctions of the
angular part of the above Laplacian with eigen-
values K(K +4), K=0, 1, -+--. They may be
classified completely using the Lie algebra of
SU(3) which provides exactly the five quantum
numbers required. Two of the quantum numbers
may be chosen to be the total orbital angular mo-
mentum L and its z component M. The functions
also have convenient symmetry properties under
interchange of the spatial coordinates of any two
particles. These angular harmonics have been
discussed by several authors; the treatments
most closely related to our work are given by
Dragt,? Zickendraht,® and Simonov and Badalyan.*
The advantage of this expansion is that for rea-
sonably soft pair potentials the three-particle
wave function is very accurately represented
with just the first few harmonics as labeled by
the global quantum number K.

Each component of the spatial wave function is
multiplied by the appropriate spin-isospin func-
tion so that the total state is completely anti-
symmetric. Substitution of the truncated expan-
sion into the wave equation leads to a system of
simultaneous differential equations for the radial
functions. The equations are coupled by func-
tions of p which are matrix elements of the pair
potentials taken between the spin angular har-
monics. For L =0 only even values of K occur
and the matrix elements for the square-well and
Coulomb interactions used here may be obtained
in closed form.

In the present work we used up to four harmon-
ics. The first has K=0 and is a component of
the completely space-symmetric or principal S
state (Sp). This contributes 98.37% to the total
wave-function normalization. The next two have
K =2 and are states of mixed spatial symmetry
(S’). One has T=3, the other T=%, and the
latter is coupled only via the Coulomb potential
between the two protons in He3. The T = 2 state
contributes only 0.0013% to the normalization in

He® and could well have been neglected entirely.
The intensity of the 7=% S’ state is 1.16% and
its radial wave function is of opposite sign to the
radial function of the K =0 component. This is
important for obtaining agreement with experi-
ment for the Coulomb energy of He® and the rms
charge-radius difference between H? and He®, be-
cause of cross terms between the Sp and S’ states
in the expressions for these quantities. The last
harmonic has K =4 and is another component of
the Sp state. Its intensity is 0.47%.

The differential equations were solved numeri-
cally to obtain the binding energies and radial
functions for H® and He®. The wave functions
were then used to calculate the rms radii for
the distribution of the like and odd particles in
these nuclei, to calculate the corresponding
form factors, and to check the directly calcu-
lated Coulomb energy difference by means of
perturbation theory. Comparison with experi-
ment is possible only with knowledge of the pro-
ton and neutron charge form factors. We as-
sumed that F,(z) =0 and for F,(p) we took the
three-pole fit of Janssens et al.” which gives an
accurate fit to experiment over the relevant
range of momentum transfer. The fit implies an
rms proton radius of 0.85 fm. The electric form
factors and charge radii were calculated using
the formulas of Schiff.® The results are given in
Tables I and II, which show that the calculated
numbers are in good agreement with experiment
except that the form factors are predicted ap-
preciably too large for high ¢®. The experimen-
tal results in Table II are those of Collard et al.”
The discrepancy between theory and experiment -
for the form factors at large ¢® is probably
caused by our neglect of short-range repulsions
in the two body forces.

The low-energy doublet and quartet (S-wave)
phase shifts for n-d scattering were obtained by
solving the Fadeev equations numerically for
energies below the breakup threshold. The basic
procedure has been employed by many authors®
and involves forming amplitudes of definite spin
and isospin, neglecting all but s-wave two-body

Table I. Bound-state properties of three-nucleon systems.

H® (theor) H(expt) He®(theor) He®(expt)
Binding energy (MeV) 8.72 8.49 7.97 7.73
Coulomb energy (MeV) 0.752 0.764
Rms charge radius (fm) 1.73 1.70 +0.05 1.85 1.87 £0.05
Total kinetic energy (MeV) 28.73 28.20
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Table II. Electromagnetic charge form factors for tritium and helium-3.

ety | F @ F_, (H))EXP F,(He)TH | F_ (He’)EXP
1.0 0.624 0.622 + 0.007 0.587 0.567 + 0.004
1.5 0.502 0.503 + 0.007 0.459 0.431 + 0.004
2.0 0.408 0.387 + 0.007 0.363 0.329 + 0.004
2.5 0.334 0.312 + 0.006 0.290 0.258 + 0.003
3.0 0.276 0.267 + 0.005 0.233 0.209 + 0.002
3.5 0.229 0.215 + 0,004 0.189 0.1614 + 0.0017
4.0 0.191 0.175 + 0.004 0.154 0.1326 + 0.0015
4.5 0.160 0.137 + 0.003 0.126 0.1013 + 0.0010
5.0 0.13 0.118 + 0.004 0.104 0.0813 + 0.0012
6.0 0.0959 0.0758 + 0.0041 0.0709 0.0548 + 0.0015
8.0 0.0505 0.0295 + 0.0039 0.0342 0.0173 + 0.0010

interactions, and making a separable approxima-
tion to the off-shell two-body ¢ matrix in order

to reduce the problem to a finite set of coupled
one-dimensional integral equations. The key
step here is the introduction of the separable
approximation which is facilitated in this case by
a special property of the square-well potential.
If we denote the partial-wave { matrix by ¢,, it

is a fact that for this potential the difference

t; +o—t; is a separable operator; this may be
simply demonstrated by noting that v; ,,-v; is
separable, where v; is the partial-wave poten-
tial operator. This property, which is apparent-
ly unique to the square well, leads to a very
natural separable approximation. That is, one
observes that it is standard procedure in the
(total L=0) Fadeev equations to neglect ¢, with
respect to ¢, for I > 2; this is equivalent to keep-
ing only s-wave two-body interactions. It is thus
consistent to approximate ¢, by just the separable
difference between it and ¢,, i.e., no new approxi-
mations are introduced by employing this sepa-
rable approximation. Clearly, one can make a
similar statement if one neglects all but some
finite number of two-body partial waves.

Given the separable approximation it is straight-
forward to solve the resulting equations; the re-
sults are presented in Fig. 1 for a calculation in
which both s- and d-wave two-body interactions
were included. For comparison, experimental
(n-d) points taken from van Oers and Seagrave®
are also plotted. It is clear that the agreement
between the calculated and experimental phase
shifts is excellent; this is particularly striking
for the doublet scattering, which is known to be

very sensitive to the details of the two-body in-
teraction.’® It has been suggested that the singu-
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FIG. 1. Plots of k coté against k¥or the doublet and
quartet n-d scattering where k is the relative wave
number. Solid lines are calculated values for our
square-well model, dashed lines are extensions of
these curves above the breakup threshold. Solid cir-
cles are experimental values taken from van Oers and
Seagrave (Ref. 9).
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lar behavior of 2 cot(26) is due to a pole (a zero
in the amplitude) just below threshold!'; this is
verified in the present model in which a pole
occurs at £2=-2.94x1073 fm "2, It is worth
pointing out that the agreement demonstrated in
the doublet phase shift is obtained despite a rela-
tive lack of agreement with the value of the doub-
let scattering length quoted by van Oers and Sea-
grave® (2¢=0.11+0.07 fm). Our calculated value
of 0.408 fm appears to favor the previously pub-
lished value of 0.7+0.3 fm.?

The accuracy of the methods of calculation has
been checked carefully by numerical studies of
the rate of convergence when extra components
are added to the wave functions in the harmonic
method, or when further terms are included in
the separable approximations to the Faddeev
equations. We estimate that our quoted value
for the binding energy of H® is within 1% of the
exact result for this model. Furthermore, the
results for the bound-state properties calculated
with these two very different methods agree with-
in 3 %.

While one should not conclude from this work
that nature indeed employs square wells, these
results have considerable significance for the
general program of three-body theory. The
generally accepted motivation for doing three-
nucleon model calculations of this type is to
probe the nuclear forces by using the three-body
results to discriminate between potentials pro-
ducing identical two-body behavior. Such calcu-
lations have indeed shown that a number of three-
body quantities are quite sensitive to the details
of the force law, and that the experimental val-
ues are not at all easy to fit simultaneously with
a few parameter theory. However, if it is pos-
sible to correlate important features of the two-
and three-body low-energy data with an apparent-
E—nonrealistic potential, as in the case of the
square well, one has to question seriously the
nature of the results one can expect from this
program.

On the other hand, it may be that the square
well has something to tell us about the mathemat-
ical properties of the “real” potential. It is
probably worth noting in this respect that the off-
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shell /-matrix elements generated by this poten-
tial undergo numerous changes of sign, a feature
not shared by other simple potentials such as
the Yukawa and exponential which do not give
good simultaneous agreement with experiment
for the two- and three-body data. It has recent-
ly been pointed out to us'® that a somewhat more
“realistic” nucleon potential, the Reid potential,
also possesses this oscillatory off-shell proper-
ty. In fact, for the case of the S, potential,
which is the only one for which we have compari-
sons available, the Reid potential and our simple
square well give closely similar values for the
phase shift up to a relative energy of 80 MeV.
Furthermore, the half-off-shell /-matrices gen-
erated by the two potentials have closely match-
ing values for a wide range of off-shell momen-
tum.
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