PHYSICAL REVIEW LETTERS

Volume 24

.

30 MARCH 1970

NUMBER 13

IMPACT-PARAMETER DEPENDENCE OF INNER-SHELL VACANCY PRODUCTION BY HEAVY-ION BOMBARDMENT

H. J. Stein, H. O. Lutz, P. H. Mokler, K. Sistemich, and P. Armbruster Institut für Festkörper- und Neutronenphysik, and Institut für Kernphysik, Kernforschungsanlage Jülich, Jülich, Germany (Received 29 January 1970)

30-MeV I ions were scattered by thin targets of Yb and Te. The differential and total cross sections for characteristic x-ray production were measured. The mechanism responsible for inner-shell ionization is suggested to be electron promotion by level crossing in the quasimolecule of the colliding atoms.

In collisions between energetic heavy particles, inner-shell vacancies may be produced in both atoms and characteristic x rays will be observed. A possible mechanism for vacancy production is direct ionization, which can be treated under certain conditions in first Born approximation.¹ Employing Born's approximation with the corrections given in Bang and Hansteen² and in Brandt, Laubert, and Sellin,³ outside its range of validity $(Z_1 \approx Z_2 \gg 1)$, ion velocity v less than orbital velocity u of the excited electron), the calculated cross sections are orders of magnitude smaller than experimentally determined.⁴ Since this approximation outside its range of validity generally overestimates cross sections, the mechanism of direct ionization can be assumed to be negligible in these cases. As a result, other mechanisms have to be considered, e.g., multiple ionization or electron promotion.⁴⁻⁶ To shed more light on this open question we measured the inner-shell excitation probability by heavy-ion bombardment as a function of impact parameter.

30-MeV I ions from the Heidelberg EN tandem accelerator were scattered by thin targets of Te and Yb. Characteristic x rays of both colliding particles were analyzed in a proportional counter and measured in coincidence with ions scattered through large angles. The deflection angles, $0.5^{\circ} \leq \theta_{1ab} \leq 7^{\circ}$, were chosen such that the corresponding impact parameters *p* ranged approximately from 10^{-2} to 10^{-1} Å.⁷ In addition, the total ionization cross section σ_{tot} was obtained by measuring the total number of characteristic x rays coincident with all ions transmitted through the target.

The experimentally determined quantity is the number of detected characteristic x rays per

Table I. Characteristic parameters involved in the collision between 30-MeV I ions and Te and Yb	itoms
--	-------

Colliding particles	X rays	ω	σ _{tot} [10 ⁵ b]	n	α	P_{\max} [10 ⁻¹⁰ cm]	$a_m \\ [10^{-10} \text{ cm}]$
I→ Te	$\mathrm{Te}_L/\mathrm{I}_L$	0.14	6.4 ± 2	1.05 ± 0.15	0.5 ± 0.3	4 ± 2	~5
I→ Yb	\bar{I}_L –	0.14	2.0 ± 0.2	1.10 ± 0.15	0.5 ± 0.3	~4	~5
	Yb_M	0.04	55 ± 2.5	0.95 ± 0.10	>2	>4	~8

FIG. 1. Probability P(p) for production of *L*-shell vacancies in I to Te as a function of impact parameter p.

scattered I ion, N_x/N_{I} . This ratio is a direct measure of the impact-parameter-dependent probability P for inner-shell vacancy production. The absolute value of P can be obtained by multiplying with a scale factor, depending on counter efficiency and solid angle, and x-ray fluorescence yield ω (cf. Table I).

In Fig. 1, P(p) is plotted for the scattering of 30-MeV I ions on Te atoms. It is assumed that P(p) is identical for both colliding particles ($Z_{\rm I} \approx Z_{\rm Te}$). The solid curve is a best-fitting Gaussian function. From this function we obtain the production probability for an inner shell vacancy in a head-on collision α and the impact parameter $p_{\rm max}$ which contributes most to the total cross section. $p_{\rm max}$ is located at the maximum of the function pP(p). Besides α and $p_{\rm max}$, we summarize in Table I our measured values for $\sigma_{\rm tot}$ and the exponent *n* of its energy dependence, σ $\propto E^{n}$ (for 30- to 40-MeV I ions). ω and the approximate shell radii a_m are given also.

In the case of a Gaussian function for P(p)(Fig. 1), the total cross section is $2\alpha p_{\max}^2$. Using this formula and our tabulated values for α and p_{\max} , the resultant cross sections (5×10⁵ b, I-Te) are consistent with the measured total cross sections.

Our values σ_{tot} , p_{max} , α , and *n* cannot be ex-

plained by the direct ionization mechanism, as shown in the following for the I-Te system: (1) From the calculations given,² we get $p_{max} \leq 9.5 \times 10^{-3}$ Å, which is too small if compared with the experimental result. (2) From the theory of direct ionization¹ we obtain $\sigma_{tot} \approx 3 \times 10^4$ b. This too small value is an upper limit from a theory which in this velocity range overestimates the cross sections. In addition, the corrections introduced by Brandt, Laubert, and Sellin³ would reduce the calculated cross sections by orders of magnitude. (3) For direct ionization, we expect $n = 4^1$ instead of n = 1.

Our values are in agreement with an electronpromotion mechanism.⁶ Inner-shell vacancies are produced by level crossings in the quasimolecules formed by the colliding particles. With our values of σ_{tot} , n, and p_{max} , and following the calculations in Fortner et al.,⁸ we obtain an average level-crossing distance of 0.075 Å. This lies between the *L*-shell diameter and the *L*shell radius. From our α , we conclude that several terms in the *L* shell are involved.

We are deeply indepted to Professor Dr. W. Gentner and Professor Dr. U. Schmidt-Rohr for the hospitality at the Max Planck Institut für Kernphysik, Heidelberg. We are grateful to Mr. P. Schmidt and Mr. J. W. Grüter for assistance in the experiments.

³W. Brandt, R. Laubert, and I. Sellin, Phys. Rev. 151, 56 (1966).

⁴H. J. Specht, Z. Physik 158, 301 (1965).

⁵N. F. Mott and H. S. W. Massey, <u>The Theory of</u> <u>Atomic Collisions</u> (Oxford Univ., Oxford, England,

1965). ⁶U. Fano and W. Lichten, Phys. Rev. Letters <u>14</u>,

⁶²⁷ (1965). ⁷W. Everhart, G. Stone, and R. J. Carbone, Phys.

Rev. <u>99</u>, 1287 (1955).

⁸R. J. Fortner, B. P. Curry, R. C. Der, T. M.

Kavanagh, and J. M. Khan, Phys. Rev. 185, 164 (1969).

¹Cf. E. Merzbacher and H. W. Lewis, in <u>Handbuch der</u> <u>Physik</u>, edited by S. Flügge (Springer, Berlin, 1958), Vol. 34, p. 166.

²J. Bang and I. M. Hansteen, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. <u>31</u>, No. 13 (1959).