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Explanation is given for observed sharp forward peaks in distributions of transverse
momentum for hadrons produced in deeply inelastic hadron collisions. Small @-value
decay of peripherally produced nucleon resonances is the basic mechanism responsible
for peaks in both 7 and proton spectra. Implications of this result are discussed.

Experimenters have recently made detailed
measurements of cross section d%0/dpd§: for a
single observed particle emergent from high-en-
ergy hadron-hadron interactions.! Particularly
striking is structure at very small values of
transverse momentum p  of the final pion in pp
-~ m* +anything.? Indeed, as displayed in Fig. 3
of Ref. 2, for pion c.m. longitudinal momentum
pr=0.6 GeV/c, data points for which p,"250.1
(GeV/c) "2 fall on a curve of form exp(—bp 1)
with b= 15 (GeV/c)? there is a break in the dis-
tribution, and at large p4* a shallow curve
[ccexp(-3p ;7] is measured. Suggestion of a sim-
ilar forward peak is apparent also in data from
pp —p +anything.?

Because only one final particle is detected in
these single-arm-spectrometer experiments,
there is no empirical way to ascertain whether
the observed particle is scattered directly or is
the decay product of a resonance. Nevertheless,
there is intuitive appeal to the idea that data at
very small p ;% are of the direct variety®; in par-
ticular, the very steep forward peak might be
thought to reflect simple exchange-model dynam-
ics. In this note we develop very much the op-
posite point of view. Essentially, we assert that
the steep forward peak in pp —7* +anything is
formed from 7* which are decay products of nu-
cleon resonances produced peripherally. The
exact spin structure of nucleon resonances is not
crucial, nor is it terribly important how strongly
peripherally they are produced. Decisive factors
are small @ value in resonance decay and small
value of pion mass, which enters in the ratio
(m,es/m ;)% As a result, decay pions emerge
with smaller (not larger!) p,than parent reso-
nances.* The same mechanism is responsible
for protons with small p,, but the forward peak
is predicted to be less steep than for pions. A
consequence of our analysis is the important, if
pessimistic, conclusion that it is impossible to
isolate a direct-scattering component in deeply
inelastic data obtained in single-arm experi-
ments, Other implications and suggestions for
further tests of our approach are listed at the

end.

Model.—Our mechanism is sketched in Fig. 1.
We imagine a process in which resonance N* is
produced along with n other particles. Symbol
X does not indicate any specific exchange mech-
anism but merely serves to represent peripheral
production. (We need not specify details about
the configuration of n particles produced with N*
other than to remark that in single-arm data an
implicit sum is made over all possible multi-
plicities and particle types.) Resonance N* sub-
sequently decays via N* -7 +N or sequentially as
N*—-7+Ng* We are interested in the distribu-
tion in transverse momentum of decay pions.

In order both to motivate our model and to il-
lustrate an important aspect, we begin by dis-
cussing pp ~nA™(1236), a special case of Fig. 1.
This quasi—-two-body process is known to pro-
ceed peripherally; most A’s go forward/back-
ward. In Fig. 2, we sketch the distribution in
prlc.m.) vs pgfor 7* coming from decay of for-
ward A’s. Pions populate a thin shell. If we ig-
nore finite A width, the maximum of p ; (for
pions) is {[m 2=(my +m )2 [m 2~ (my—m )2}/
4m ,?}250.23 GeV/c. Moreover, for incident
proton lab momentum 12 GeV/c and p;=0.6, p¢
~0.2 GeV/c. It is instructive to compare these
numbers with corresponding values obtained from
data.? Experimenters find d?0/dpd$ < exp(—15p %)
at small pand for fixed p;=0.6 GeV/c.? Using
d?o/dp pdp i# = (1 /p*)d?a/dpd, we deduce directly
that at p;=0.6 GeV/c, the maximum of experi-
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FIG. 1. Illustration of the basic production and decay
mechanism responsible for final 7 with very small p 7.
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FIG. 2. Sketch showing region (cross-hatched) in
P, pr plane populated by m resulting from N* decay.
Dashed line indicates p;~ 0.6 GeV/c.

mental do/dp ;- occurs at p7=0.2 GeV/c (not at
pr=0). Note the very close correspondence of
(i) the value of p; at which the experimental
maximum occurs and (ii) the position of the thin-
shell distribution produced by N* decay. The A
is not important per se; what is crucial is the
existence of forward N*’s which have small Q-
value® decay modes: N* —7N or N*—7Ng*. De-
cay with small @ generates 7’s having p  dis-
tributions peaked at very small values, such as
observed in deeply inelastic data.?

Certainly not all N* go exactly forward, as was
assumed just above; the result is that there is a
series of elliptically shaped thin shells of the
type shown in Fig. 2 but with major axes inclined
slightly with respect to the p; axis. Moreover,
for large values of multiplicity » (see Fig. 1),
kinematical considerations suggest that N* may
not be produced very peripherally. We turn
therefore to an examination of the relationship of
production and decay distributions. One might
expect intuitively that if a A™ (or, more general-
ly, N*) is produced with distribution exp(—bp p ),
then the p ;* distribution of its decay pion is ne-
cessarily less peripheral.® In other words, the
pion’s distribution in the N* rest frame convo-
luted with the N* production distribution should
lead to an overall pion distribution in p ;# with
diffraction constant b,<b,. This argument is
wrong in one crucial respect. A simple illustra-
tion shows the fallacy. Imagine a particle of
mass M produced at center-of-mass angle 6 in
the reaction pp —M +anything. Assume, more-
over, that M decays into m, and m, with zero @
value.® Figure 3 is a sketch of the kinematics.
Because @ =0, the velocities of M, m,, and m,
are all equal; consequently, the final momentum
of m; is p; =(m;/M)pp and pr; =(my/Mp s
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FIG. 3. Diagram (not to scale) giving relationship of
transverse momentum vectors of decay 7 and parent
resonance (A), assuming =0,

Therefore, if production of M is described by
do/dp %« exp(=bpp r2), then the distribution for
m, is do/dp p® < exp(=bypr?), with b, =by(M/

m ). Observe that sharpening occurs, not
smearing. The effect is tremendous if m, is a
pion and is even considerable for a proton. In
reality, of course, @ #0, and convolution (smear-
ing) will occur. However, smearing starts from
bpM/m,)?, not from b,, as a naive argument
would suggest. This discussion emphasizes the
crucial roles of (i) small @ value and (ii) small
value of the pion mass.

More quantitative study requires accommodat-
ing at the same time @ #0, nonforward produc-
tion, as well as realistic distributions in spin J
and mass of N¥'s.° We may investigate these
issues numerically by postulating the process
pp ~N*+(MM) and choosing a suitable (if crude)
production amplitude of the form

|A|2=c|Ay«|?exp(ri). (1)

Amplitude A y+ is a function of N* mass and scat-
tering angle 6(p, — ) measured in the N* rest
frame (see Fig. 1); we can represent Ay« either
as a sum of Breit-Wigner (BW) terms or, for N*
—~p7, by using elastic on-shell data. In Eq. (1),
¢ is a constant, and ¢ is defined in Fig. 1. We
ignore variables internal to cluster MM. In our
investigation, we varied the mass and spin of N*,
the mass of MM, and the constant A. From Eq.
(1) we compute do/dp 12 for 0.5 <p; <0.6 GeV/c,
in order to compare with the data.? Results give
full quantitative support to the qualitative argu-
ments given above and are also in good agree-
ment with the data.? For example, if MM =neu-
tron, A =12 (GeV/c) ™2, and N* = A(1236) with J=3,
do/dp r? is well approximated by exp(-bp r?) with
b=16 (GeV/c) ~2, Insensitivity of the results to i
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is apparent: E.g., if A is dropped to 6, b=15.
However, MM and @ values are important var-
iables. With N*=A(1236), MM=1.5 GeV, and x
=8 (GeV/c) 7%, b =24. On the other hand, in pro-
cess pp ~=N*+p, if the N* has mass 1.6 GeV and
s-wave decay to pm, do/dp r® peaks at pr2=0.3
(GeV/c)? and has a pronounced minimum at p ;2
=0.

We have established that a very sharp forward
peak in pp — * +anything is obtained naturally.
We now turn to the important issues of absolute
normalization and the 7*/7 ~ ratio; comments
follow on other aspects of the data and on the
relationship of our approach to possible alterna-
tive models.

(1) Normalization. — The integral under the for-
ward 7% peak of Ref. 2 yields a large experimen-
tal cross section of <10 mb,” This is a substan-
tial fraction of the total inelastic pp cross sec-
tion. However, bubble-chamber data on specific
final states may be combined to show that o( pp
-A™ 4 anything) at 12 GeV/c is 26 mb.® More-
over, additional cross section is provided by
production of other N*’s having decay modes with
@ sufficiently small to contribute a steeply-
peaked forward 7* distribution. These include
N*(1400) (0> 1 mb), for which n7*, A°T*, and
A~1" modes contribute, as well as N*(1512) and
N*(1688) for which A% * and A~7* modes have
small enough @. The total cross section from
all these processes is sufficient to match the ef-
fect seen in Ref. 2.

(2) Ratio 7*/m ~.—Experimentally, do(n%)/
do(r~)=3 at 12,2 GeV/c.? That is approximately
the ratio expected in our model; we sketch our
reasoning here. Principal processes contribut-
ing to the forward 7 peak are assigned to three
categories: pp ~Nyo™* +Nyjz4s°, Nyjp' Ny a2’
and N,,,* +N,,,*. Symbol N denotes a system
(not necessarily resonant) made up of a nucleon
plus n pions, withn=0, 1, or 2. Superscripts
and subscripts on N denote total charge and iso-
spin, respectively. Isospin 23 is excluded be-
cause exchange of I =2 would be implied. We
limit » <2 because otherwise mass values are
so large as to make unlikely the minimum neces-
sary peripheralism in production. Decay pro-
ceeds in all three cases via N—N’+7*. Simple
arguments based on isospin coupling coefficients
demonstrate that the expected (7*/r 7) ratio is in
the range 2 to 4. In order to specify an exact
figure, we would have to give a detailed discus-
sion of production mechanisms for states in each
of the three categories listed; that argument is

inappropriate here.

(3) Proton distribution.—Our discussion has
concentrated for the most part on the reaction
pp —7* +anything. However, for pp —p +anything,®
our mechanism predicts that the p 2 distribution
of the final proton will also be steeply forward
peaked. This conclusion is easily obtained sim-
ply by reviewing the above arguments with the
decay proton rather than the pion in mind; the
slope b, of the forward peak will be less than
for pions, of course, because the ratio (mp/
Myes)?>> (Mg /m )% Explicit calculations at
incident proton lab momentum 12 GeV/c and p; ,
=1.7 GeV/c (which is the appropriate fixed value
of p;,, corresponding to p; ,=0.6 GeV/c) indicate
that b, <3b,. Data indeed suggest a forward peak
for protons, and b,~8(GeV/c) ™* at p; , % 1.7
GeV/c (inelasticity 60-70%).°> However, there
are really too few experimental points at small
p r* to determine a precise slope.® An important
consistency check on our model is the observa-
tion that for protons and for pions, integrated
experimental cross sections in steeply peaked
forward regions are equal to within a factor of 2.7

(4) Background spectrum.—As the @ value in-
creases, {pr) for decay protons and pions also
increases; for large @, the distribution do/dp 2
has a pronounced minimum near p2=0. More-
over, sensitivity to the mass of the decay prod-
uct decreases sharply with increasing @. It is
not unexpected, therefore, that do/dp ;> approach-
es the same shape at large p ;2 for both p and 7.2?

(5) Overall energy dependence.—Two comments
are in order. First, the length of the major axis
of the decay ellipse shown in Fig. 2 increases as
P1ap2. Therefore, if distributions d?o/dp ;dp
at two energies are to be compared, one must
scale values of p; appropriately. For example,
Prr=0.6at p1,,=12 GeV/c corresponds to pz .
=1.0 at 30 GeV/c. Second, regarding the mag-
nitude and shape of d?0/dpdp %, unless we in-
voke a detailed model for N* production, it is
not possible to make definitive statements. How-
ever, inasmuch as cross sections for A™ +any-
thing, N*(1688) +anything, etc., appear to vary
very slowly as p;,, is changed from 10 to 30
GeV/c,® we expect both the slope and magnitude
of the forward peak in p * (integrated over pp)
to vary correspondingly little. On the other
hand, because of the dilation mentioned above,
the magnitude of d®o/dpdp ;2 at fixed (scaled)
p1 should decrease roughly as p.,~ Y2

(6) Experimental confirmation.—1It is important
that bubble-chamber data support the view de-

697



VoLUME 24, NUMBER 12

PHYSICAL REVIEW LETTERS

23 MARCH 1970

veloped here. Panvini has examined fitted events
of the type pp ~pN +n7* +mu ™ at 28.5 GeV/c,
where N is a nucleon and n,m =1, A strong A™
signal is seen in these data. The distribution do/
dp 72 for m* has both steep and shallow compo-
nents. The steep component is strongly correlat-
ed with 7* being in the A™ region of p7* invari-
ant mass.® Panvini’s result suggests that bub-
ble-chamber and counter data could be usefully
correlated in other instances also, to yield more
understanding than either device alone provides.

(7) Mass effect.—In high-energy reactions it is
observed that (p ) increases systematically with
increasing particle mass.’ Our mechanism,
based on decay of isobars with low @, suggests
an explanation for this effect.

(8) Exchange mechanisms.— Finally, let us
mention briefly the possibility of using baryon
exchange at the p7* vertex to explain the ob-
served steep dependence on p % Such an ap-
proach is in principle dual to the one we have ad-
vanced here. In practice, however, the explana-
tion in terms of N* decay is quantitatively supe-
rior. First, as remarked, it was essential to
our argument that the @ value of N* decay be
small; in other words, (Ng*7) subenergy must
be small in order that p 2 for the decay pion be
small. Experience demonstrates that exchange
mechanisms give quantitatively poor representa-
tions at small values of subenergy when strong
resonances are present. Second, in the 7~ case
where only A exchange is involved, the quite
flat behavior of backward elastic 7 ~p scattering'®
would seem to rule out an exchange-model in-
terpretation for exp(-15p +%). However, let us
recall that one can get much closer to the A pole
in an inelastic process and, moreover, that the
Ag reduced residue is rapidly varying.'? No
doubt an explanation based on baryon exchange
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can be constructed, but that type of argument
will be speculative, at best, until we know con-
siderably more about how to extrapolate reliably
from backward elastic 7 7p data to the correct
residue at the A 5(1238) pole position.
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