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Renormalized perturbation theory in the anharmonic oscillator diverges.

In many field-theoretic models,® and in partic-
ular in the anharmonic oscillator,® ® unrenormal-
ized perturbation theory diverges. It is thus in-
teresting to ask whether reexpressing a field the-
ory in terms of its physical masses and coupling
constants (renormalizing) could give rise to a
convergent perturbation theory. In this paper we
show that for the anharmonic oscillator model the
answer to this question is no. Specifically, we
show that the energy levels of the anharmonic
oscillator, when expressed terms of the renor-
malized coupling constant A and mass M, cannot
be analytic functions of A near A=0 for fixed M
regardless of the definition of A. We conclude
with an illustrative example using a particular
choice for A.

Our result that the renormalized perturbation
series diverges may help to clear up some of the
mystique surrounding the renormalization pro-
cess. At least in the anharmonic oscillator, re-
normalizing does exactly what it is supposed to
do —it replaces “bare” parameters with physical
parameters —and nothing more.* Furthermore,
our result strongly suggests that renormalized
perturbation theory also diverges in more real-
istic field theories.

The anharmonic oscillator is an ideal field-the-
oretic model in which to study perturbation theo-
ry for several reasons:

(a) The model is simple enough to allow a com-
pletely general approach to renormalization.
That is, although the renormalized coupling con-
stant A is not unique, our analysis holds for all
choices of A.

(b) The model is complicated enough to exhibit
a nontrivial and divergent unrenormalized Feyn-
man perturbation series for all n-point Green’s
functions. In fact, the anharmonic oscillator is
a ¢* field theory in one-dimensional space-time
and its diagrammatic expansion is identical to
that of the usual four-dimensional ¢* theory.*?

(c) The perturbation series is finite in every
order.>*® Thus, our analysis is not complicated

by the ultraviolet divergences that appear in
higher-dimensional space-time.

Using the notation of Ref., 2, the unrenormal-
ized anharmonic oscillator Hamiltonian is

H=30"+3m® ¢* +2¢%, 1)

where [¢, ¢|=%, and m and x are the bare mass
and coupling constant. The “physical” quantities
of the theory are E,(m, ), n=0, 1, 2, -+, the
energy levels of H. The E, take the form £ ,(m,
N)=mF,(w) where w=xm"2,

To renormalize the theory we first rescale the
energy levels so that the ground-state (vacuum)

energy is 0. Thus we define a new Hamiltonian.
¥=H-E,, (2)

whose energy levels are § ,=E_ - E,.

Then we rewrite §, in terms of the mass of the
physical one-particle state M =&, and the renor-
malized coupling constant A:

§,=8,M, N\)=MF (), 3)
where
Q=AM "3, (4)

Because {2 is proportional to the renormalized
coupling constant, as  approaches zero along
the real axis in the @ plane, the energy levels
must assume their free (harmonic-oscillator)
values, F,(0)=n. € is not required to exhibit
any further properties and is certainly not unique-
ly defined.

We will establish the divergence of renormal-
ized perturbation theory by showing that the as-
sumption that each F,(Q) is an analytic function
of © within a circle of radius R, about the origin
leads to a contradiction. This result follows di-
rectly from three crucial qualitative properties
of the eigenvalues of the anharmonic oscillator
when expressed in terms of the bare parameters
m and A. Each of these properties is ascertained
using the WKB techniques discussed in Refs, 2
and 3. We list and discuss these properties be-~
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low:

(i) F,(w) has at least one infinite sequence of
singularities in the w plane which are all distinct
from those of F,(w), n#p. More specifically,
for n =2, F,(w) has two infinite sequences of sin-
gularities in the w plane near argw=37/2 with a
limit point at w=0. We denote these singulari-
ties by w, ,,, and w,_, ,". For n=0and =1
only the sequences wotz" and wuf occur. An ex-
plicit formula and graph showing the locations of
these singularities in the w plane may be found
in Ref. 3.

(ii) F,'(w, ,.2'), where F,'=dF,/dw, is infi-
nite whenFn or n~2 and is finite otherwise.
Wy p ,,' are square-root-type branch poinﬁs. (Fp
and F),,, undergo level crossing at w, ,.,’. For
a graphical picture of level crossing see Ref. 3.)
Moreover, near w the square-root behav-
ior of F, must be

i
p.p+2

F(w)~a+b(w- nuzy b#0. (5)

Wp, p+2

To verify Eq. () one uses the approximate im-
plicit relation between F(w) and w for w near the
branch points given by WKB theory*

_r(4 21?)
S(F, w)= Ny

-exp[54 Flog(zp)+~p]—0, ()]
where p=we~3"/2, Using Eq. (6) we calculate
dF(w)/dw= (3f /8 w)(8f/8F)~! and observe that 81/
9F is zero at the branch points while 8f/8w is

not. This establishes Eq. (5).

(iii) ¥ n < p, then F (w, .,/ )~n+3 as i-=,
This statement is verified by substituting the for-
mula®® giving the branch points in the w plane in-
to the implicit relation between F(w) and w in Eq.
(6). Letting ¢—=, one observes that F, approach-
es its harmonic oscillator value.

We now show that a contradiction arises from
the assumption that the energy levels are analyt-
ic functions of  near the origin. We observe that

we can associate a sequence Qn',,+2i= Q(w,,,mzi)
with w, ,.,’ via the relation
F_ (w)=F,(w
Q) - Fp(w) - F(w) )

Fy(w)-Folw) *

The €, ,.,’ have the origin in the Q plane as
their limit point. To prove this, we note that by
property (iii), the right-hand side of Eq. (7) ap-
proaches p as i—«, But F,() is assumed ana-
lytic in & near =0 with §,(0)=p. Hence, near
2=0, F,(2) behaves like p + aQ? with ¢ a posi-
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tive integer. Thus, as i—, Q, ,,,' must ap-
proach 0 like

-l/q% F(wn +2 ) F (wJ 1 p\(l/q
Fl(wn n+2) F(wn n+2) 5 ’

Next, we invoke the chain rule for differentia-
tion:

3F () _28F,080
dw 9w’

(@)

Note that because of property (ii) and Eq. (7) the
left-hand side of Eq. (8) is infinite at w=w, ,,’.
But we have established that it is possible to
choose an i, sufficiently large that when 7> i, the
associated &, »+o lie within the assumed region
of analyticity |Q|<R, of F,(£). Thus 8F,/0Q is
finite and 8Q/9 w is infinite at points w, ,.,’, %
>i,. By the same argument, 8Q/0w is infinite at
points w, , ., g J>jo P#n, and p#n+ 2. But, by
property (i), 8F,/dw is finite at such points
Wp p +2’. Hence, 8F,/6 must vamsh at the as-
sociated sequence of points €, p+2 s J>F0e
However, an analytic function which vanishes
on a sequence of points with a limit point must
vanish identically. Thus & ,(£2) must be a con-
stant,

F,()=n, 9)

and the energy levels take on their noninteracting
values. This establishes the contradiction.

We have shown that it is not possible to define
any renormalized coupling constant §2 which pro-
vides an analytic continuation from the free (har-
monic oscillator) energy levels to those of the in-
teracting theory.

We conclude this note with a concrete example
which illustrates for a particular choice of © how
the predicted nonanalyticity appears. One rea-
sonable choice for the renormalized coupling
constant § is

Fy(w)=2F)(w) + F(w)
Fy(w)=Fy(w) ’

Note that € -0 as w—0. To show that F,() for
n>2 is not an analytic function of Q for  small,
consider a branch point of F,(w) in the w plane,
W, 242"+ Property (i) allows us to take a neigh-
borhood N of w, ,,, so small that it includes no
other branch points. Thus, F,, F;, and F, are
all analytic in the neighborhood N. Now consider
a closed path in N which contains w, ,.,’. Equa-
tion (10) defines the analytic image of this path
in the © plane as a closed path about £, s
Hence, Q,,,Mz is a branch point of &, (Q) Final-

Aw) = (10)
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ly, Eq. (10) and property (iii) imply that as

W, pe2'=0, £, ,.,'~0. Hence, F,(Q) cannot be
analytic about the origin. In fact, the origin is a
nonisolated singularity of the energy eigenvalues.

The nonanalyticity we have observed in the
above example was easy to establish because Q
was given as an analytic function of a finite num-
ber of energy levels. The general argument in-
cludes the possibility that © is not simply expres-
sible in terms of the energy levels.
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‘Renormalization is not an answer to the problem of
extracting physical information from divergent series.
One must either take the coupling constant very small
and use an asymptotic approximation or else introduce
summability methods when this is not possible. Padé
techniques have been used to sum the perturbation ex-
pansion in the anharmonic oscillator. For a discussion
of these techniques and a verification of some of the
properties of the anharmonic oscillator discovered in
Refs. 2 and 3 see B. Simon, “Coupling Constant Analy-
ticity for the Anharmonic Oscillator” (to be published),
and J. J. Loeffel, A. Martin, B. Simon, and A. S.
Wightman, “Padé Approximants and the Anharmonic
Oscillator” (to be published).
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Proton-proton elastic scattering has been measured at 15.2, 20.0, and 29.7 BeV/c.
The data at 20.0 BeV/c confirm the presence of a break at — = 1.2 (BeV/c)2. The data
at 29.7 BeV/c show essentially the same behavior. The cross section is still falling

with increasing energy in this —f range.

In the course of an extensive wire-plane exper-
iment at the Brookhaven alternating-gradient
synchrotron (AGS), our group accumulated data
on elastic and inelastic p-p scattering at a num-
ber of angles and energies. The inelastic-scat-
tering data along with details of the apparatus
and the technique have already been reported.?

A distinctive feature of these data is the pres-
ence of sharp breaks in the cross sections for
single isobar production near —¢=1 (BeV/c)2.
Recent proton-proton elastic-scattering mea-
surements® near 20 BeV/c also exhibit a pro-
nounced break at —t=~1.2 (BeV/c)?. Many mod-
els have suggested that a dip or break might oc-
cur in this region. Some of these, based on the
optical model proposed by Yang and his collabor-
ators,® give an asymptotic form which is related
to the proton electromagnetic form factor. Oth-

ers, such as the Regge-pole model of Frautschi
and Margolis,” are able to predict the energy de-
pendence of the cross section. To distinguish be-
tween the predictions, it is important to obtain
proton elastic-scattering data at as high an ener-
gy as possible in order to observe how the break
changes with energy. This Letter presents elas-
tic cross-section measurements at 15.2, 20.0,
and 29.7 BeV/c, making it possible to compare
directly with the data of Allaby et al.2 and also

to observe the change of the cross section with
increasing energy.

The cross sections were measured by detect-
ing the high-energy proton with a magnetic spec-
trometer which utilized wire planes connected
“on-line” to a PDP-6 computer. A beam of 10°
to 10° protons per pulse was obtained by diffrac-
tion scattering at one degree from an internal
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