
VOLUME 24, NUMBER 2 PHYSICAL REVIEW LETTERS 12 JANUARY 1970

~H. E. Ives and H. B. Briggs, J. Opt. Soc. Am. 28,
330 (1938).

2J. Hofmann and W. Steinman, Phys. Status Solidi 30,
K53 (1968).

3R. H. Ritchie, Phys. Rev. 106, 874 (1957).
4E. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130

(1960).
~R. H. Ritchie and R. E. Wilems, Phys. Rev. 178,

372 (1969).
6R. H. Ritchie and J. Crowell, to be published.
7B. P. Feuerbacher and W. Steinman, Opt. Commun.

1, 81 (1969).
The term "retardation" in this context merely re-

fers to the use of the time-retarded potential in calcu-
lating the Coulombic fields associated with the charge
fluctuations of the surface plasmons.

~D. Beaglehole, Phys. Rev. Letters 22, 708 (1969).
10A. Otto, Z. Physik 216, 398 (1968).
~~If Ok& & 1 such that coupling via the surface is pri-

marily in the high-k region of Fig. 1, then the struc-
ture in the drop in reflectance calculated in Eq. {2) is

so narrow that it may be completely lost in "lifetime
broadening" of the plasmons. For this case, one may
no longer assume that a drop in reflectance at energy~ is due to coupling to a surface plasmon of wave vec-
tor k(~).

~2W. E. Spicer, Phys. Rev. 112, 114 (1958).
~3F. Seitz, The Modern Theory of Solids (Mcoraw-

Hill Book Company, Inc. , New York, 1940), p. 327.
~4Substrate rms roughness values were measured

with the invaluable help of Dr. H. E. Bennett and Dr.
J. L. Stanford at the Michelson Laboratory, China
Lake Naval Weapons Station. Values were in the range
13 to 18 A rms for both the reflectance and photoemis-
sion substrates.

~H. Ehrenreich, H. R. Philipp, and B. Segall, Phys.
Rev. 132, 1918 {1963).

~6F. Wooten, T. Huen, and R. N. Stuart, in Optical
Properties and Electronic Structure of Metals and AI-
loys, edited by F. Abeles (North-Holland Publishing
Company, Amsterdam, The Netherlands, 1966), p.
332.

LIQUID-VAPOR-LIKE CRITICAL POINTS IN ANISOTROPIC FERRIMAGNETS*

Richard Alben
Mason Laboratory, Yale University, New Haven, Connecticut 06520

(Received 13 November 1969)

A magnetic critical phase transition which involves no change in symmetry is de-
scribed theoretically. In the example, YbeFeqp024 with applied field along t100], a criti-
cal point is predicted at T =7.51'K and H =43640 Oe. There is a large associated
anomaly in C&. C (H=H ) =0.3(T—T )

~ R mole ', where 6 should realize the classi-
cal value 3.

Traditional phase transitions in magnetic sys-
tems are characterized by broken symmetry.
In a space of external variables which do not
themselves change the symmetry, the phases
must be completely separated by phase transi-
tion boundaries. We describe here a magnetic
transition between phases of like symmetry.
The boundary need not be complete, and in gen-
eral it should end in a critical point reminiscent
of that in liquid-vapor systems. The critical
point occurs for some substances in experimen-
tally accessible magnetic fields, but no measure-
ments of the predicted anomalies have yet been
reported.

We illustrate the specific-heat anomaly at a,

critical point in ytterbium iron garnet (YbIG,
YbsFe, oO,~). Remarkably, true classical criti-
cal behavior is expected for this case. In other
systems there should be some effect due to fluc-
tuations. In any case the critical exponents ex-
pressing the nature of the singularities in ther-
modynamic functions should be different from

any which have heretofore been observed.
As is well known' a ferrimagnet near its com-

pensation temperature likes to assume a canted
configuration in an applied field. The angle
which a given sublattice makes with the field de-
pends on the field magnitude and on the size of
the various (temperature- sensitive) sublattice
moments. Treating one particular sublattice an-
gle as a free variable, we may say that the free
energy (from exchange and Zeeman interactions)
has a minimum at the equilibrium canting angle,
and that this exchange minimum moves in angle
as field and temperature vary. We add anisotro-
py by superimposing a background with wells at
the sublattice easy directions. ' In high fields
the exchange minimum can be steeper than the
wells and a.s it sweeps along (as, for example,
when the temperature passes a compensation
point) it can carry the sublattice continuously be-
tween them. In low fields the min, irnum is not so
steep and the system will only be able to follow
by jumping in first-order transitions to the an-
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isotropy well nearest the exchange minimum.
There is some intermediate field at which there
occurs a critical point marking the end of the
first-order phase boundary.

At the critical point the particular sublattice
is just barely stable with regard to its mean po-
sition; however, it will not necessarily lose its
internal rigidity. An analogy can be made to a
ferromagnet which loses its anisotropy but not
its intra-sublattice exchange: It becomes more
susceptible to fluctuations but even so these will
be important only at temperatures which are
some fraction of the (somewhat reduced') Curie
temperature. From another point of view the in-
ternal rigidity of the sublattice effectively in-
creases the range of interaction of each of its
constituents with those on other sublattices.
Thus, unlike real liquid-vapor critical points,
here there need be no great buildup of fluctua-
tions and classical critical behavior might be
realized.

We now outline a very approximate but quanti-
tative theory of liquid-vapor-like transitions in
a two-sublattice ferrimagnet. A more rigorous
approach (such as we will use in the YbIG exam-
ple) requires detailed knowledge of the physical
system under consideration.

We denote the sublattices by E and R, respec-
tively. For a given direction of I', the exchange
plus Zeeman free energy (neglecting here some
entropy and susceptibility contributions) is

F " =-Mp(H +AMF -2AHMFx) -HMFx, (1)

where M+ and M~ are the I' and R magnetic mo-
ments (magnitude), H is the applied field, x the
direction cosine that Mz makes with H, and A, is
the positive (antiferromagnetic) intersublattice
exchange. Mz and Mz are assumed to be func-
tions of both II and T. We now minimize F' "
against x, take the second derivative at the mini-
mum (called x'" ), and arrive at the following ap-
proximation to Eq. (1):

F'" =F, + ,'[(MF'H')/AM„']-[x-x'"(H, T) ]', (2)

where

x "(H, T) =(H +BCMF -AM~ )/2AH. MF,

fx'"
f &1,

fx'"
f
=1

otherwise. ' E'" is our exchange minimum; its
position moves as x'" (H, T) changes and its
"steepness" increases as H'.

Anticipating the case of YbIG, we represent
anisotropy by a term A(x'-~)' with A positive.
Adding this to Eq. (2) and minimizing yields the
following equation of state for x.'

x'+x[MF H'/4AAllfg -3]

-(MF'H'/4%AM~')x'"(H, T) =0 (4)

and the solutions have the following properties:
(i) For MF H /4A'AM& —3 p&0, on———e real root.

There are no discontinuities in x as x'"(H, T)
varies. The exchange minimum is steeper than
the anisotropy wells.

(ii) For p&0, three real roots for small x'",
two stable. Lowest free energy is one with the
same sign as x'". There is a first-order phase
transition when x'" changes sign. The anisotro-
py well is steeper than the exchange minimum.

(iii) For p = 0, critical point at x'" = 0. The size
of the critical field (H') is of order (H'H'")'~'
where H' and H'" are sublattice anisotropy and
exchange fields, respectively.

All critical exponents have their classical val-
ues. ' Particularly, the specific heat at constant
field (CH) along H =H behaves as (T-T')'~
where T' is the critical temperature and 5 =3.

YbIG is a system where a mean-field treat-
ment is extremely well justified. The Fe sublat-
tice (F) has a strong internal exchange coupling
equivalent to about 550'K. The Fe ions couple
anisotropically to Yb ions (R sublattice) on six
inequivalent sites (exchange energy about 25 K)
while the Yb's couple very weakly (less than 1'K)
to each other. At the critical temperature of
about O'K the unstable iron sublattice is too rigid
to support fluctuations while the Yb system is es-
sentially noncooperative (it is weakly coupled
and in large exchange and magnetic fields). Thus
a given Fe spin, constrained to maintain the
mean Fe direction, cares almost as much about
the state of distant Yb's as it does about its
neighbors. The F-R interaction is effectively
long range, so is truly represented by the mean
field.

The theoretical field-temperature phase dia-
gram of YbIG for field along [100] is shown in
Fig. 1. The outer phase boundary, between
aligned and disaligned states, cannot end; there
is always a second-order phase transition. The
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FIG. 1. Phase diagram for YbIG with field along
t100l. The critical point occurs at the end of the first-
order phase boundary which starts from the T axis at
6 . The outer phase boundary is second order.
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CH(H') =l.l x10'(T-T') '" erg cm ' 'K

=0.36(T-T') '"R mole

Above H', CH does not diverge but rises to a

(5)

first-order phase transition near the compensa-
tion point (O'K), on the other hand, is between
states of the same symmetry, and there are
paths between these states which never traverse
a state of higher symmetry. This phase bounda-
ry could end. In our calculation for YbIG it does
end at a field of 43 620 Oe and a temperature of
V. 51 K This then is an example of a liquid-va-
por-like critical point in a real ferrimagnet.

The specific heat at six constant fields in the
neighborhood of the critical point has been cal-
culated and is shown in Fig. 2. The calculation
employed the data of Wickersheim' for anisotrop-
ic g and 0 factors and those of Harris and Mey-
er' for the lattice contribution. The mean-field
formulation of Wolf et al. ' was used for calculat-
ing the state of the Yb's and various numerical
interation schemes were employed to find the
minimum energy direction of the Fe lattice on
the unit sphere. ' Since the magnetization chang-
es by only about 5 emu near T', the demagnet-
ization correction is unimportant.

As it turns out the approximate treatment [Eq.
(4), etc. ] contains the major features of the tran-
sition. (There is a quantitative discrepancy but
the functional forms should be correct. ) I et A
=--,'K, --,'K, =2x10' erg cm ', Mz =200 emu
cm ', X=700, Mz =200+3.6(T'-T). These im-
ply that (quite accurately) H' = (4/3)A)'" = 42
x10' Oe. Also we have x = 0.27(T —T )'~' for H
=H'. Thus
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FIG. 2. Specific heat (R/mole) at constant applied
field near the critical point. The fields (kOe) are indi-
cated at the upper left of each plot. At the critical field
C~behaves as (T-T~) 3. Results are from numeri-
cal calculations using data of Refs. 6 and 7.

peak whose maximum is [5x10'/(H-H')]R
mole ' and whose width in temperature is about
4xl0 '(H-H')'". Below H' the maximum value
of C& before the first-order phase change is
[2.5x10'/(H' —H)]R mole '. These effects are
thus seen to be quite large, and it seems that ef-
forts to observe them wouM be well justified. "

In Ybio we expect mean-field (classical) criti-
cal behavior because the temperature is so far
below the disordering (Curie) temperature of the
cooperative sublattice. There are surely other
cases where the sublattice is far from saturation
near the critical temperature. Then there would
be fluctuations and the vanishing of apparent an-
isotropy would change their character; the criti-
cal behavior would be nonclassical.

In summary we have described a magnetic
critical phase transition with two new aspects.
First there is no change in symmetry, and so
the coexistence curve ends at some point in the
H-T plane, not necessarily on the H = 0 axis.
Second, and more significant, the role of fluctu-
ations is mediated by the residual order and so

70
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the critical behavior is different from that in
typical order- disorder transitions.
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We use the low-energy pion-nucleus interaction as a means for investigating the dis-
tribution of nucleons in nuclei. An optical-model analysis of existing experimental data
on pionic atoms is used to study possible differences in the rms radii of the neutron and
proton densities. The difference in these radii, assumed to be independent of mass
number, was found to be -0.01 + 0.16 F. The absence of any significant difference in
these radii should be considered an average behavior for a wide range of nuclei.

The present situation concerning possible dif-
ferences in the rms radii of the neutron and pro-
ton distributions in nuclei is not clear. For ex-
ample, Greenlees, Pyle, and Tang' used an op-
tical-model analysis of proton-nucleus elastic
scattering for several nuclei from Ni" to Pb' ',
and found that the rms radius of the neutrons is
about 0.6 F larger than the rms radius of the
protons. This result is supported by shell-mod-
el analyses of single-particle energies, ' although
a more recent study' indicates that the difference
in these radii approaches zero in the lighter nu-
clei. In contrast to these studies, investigations
of Coulomb displacement energies' lead to the
general conclusion that the rms radius of the
neutron distribution is just slightly larger than
that of the proton distribution„

In this Letter we use pionic atoms because of
the strong pion-nucleus interaction which fur-
nishes an additional means for studying the dis-
tribution of neutrons and protons in nuclei. The
possibility of using pionic atoms as a tool for

the investigation of nucleon distributions has pre-
viously been recognized, ' although in these stud-
ies no attempt was made to examine possible dif-
ferences in the nucleon densities. However, the
utility of this probe has been exploited in a study
of pion atomic transitions in the nickel isotopes, '
and it was found that the experimental data are
consistent with equal rms radii for the neutron
and proton densities.

Experimentally, the pion atomic-transition en-
ergies and the energy-level widths (due to nucle-
ar absorption of the pions) a.re measured, and
these quantities provide information concerning
the pion-nucleus interaction. The energy levels
and widths can be calculated by finding the (com-
plex) eigenvalues F. of a modified Klein-Gordon
equation

(&'+ 2m [(E -V, )+ (E —V, ) /(2m„)])4
= 2mrV~, 4,

where m, and m denote the pion and pion-nucleus


