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The motion of a 4He particle through a He lattice leads to an excitation (a mass fluctu-
ation wave) which strongly couples to the phonons and provides a simple explanation for
the NMR data in solid He- He mixtures.

There is a large body of NMR data on solid
'He- He mixtures at low 4He concentration' '
which are difficult to understand within the frame-
work of the conventional model of the solid sys-
tem. ' The purpose of this paper is to suggest
the existence of a new excitation in solid mix-
tures, the mass fluctuation wave, which provides
an explanation for part of the observed data.

Consider a pure 'He lattice containing a single
4He atom. This 4He atom can move through the
lattice by a tunneling process in which it and a
'He atom change place. This tunneling process
occurs in a 'He lattice of volume V at a rate
which is comparable with the rate of the tunnel-
ing motion of two 'He atoms. Thus it is char-
acterized by an energy on the order of the ex-
change energy in the pure 'He lattice, J(V). We
construct a Hamiltonian which describes this
motion. To describe pure solid 'He we employ
a, complete set of ha. rmonic oscillator (HO) wave
functions at each lattice site, the y~ (x) given

by

[T(x)+-,'k(R-x)']y„'(x) =F. yg (x),

where we choose the single-particle potential,
i.e., k, such that the ground-state wave function
y~o(x) =Aoexp[-(n'/2)(x-R)'] agrees well with the
ground-state single-particle wave function for
the solid. We will take the solid to be described
by

H, = Z T( x) + -,"Z v, ( ix,. —xJ i), (2)
IJ

where v, (x, -x ) is an appropriate "t-matrix" in-
teraction potential. for particles in the low-lying
HO states of Eq. (1).' For a pure 'He lattice in
the ground state, the interesting motions of the
particles are found by second quantizing II, using
the field operator

0'(x) = ~~V ~'(x)b~o',

where bz, creates particle at lattice site R in
the ground state, a = 0. The resulting Hamilto-
nlan is

~ ~obRo bBo ~ t(RR )bBo bR'o V~bRo bRo bRobRo~
RR R

where eo is a single-particle energy ((Ho) =Neo= ground-state energy), t(RA') = fdx yzo(x) T(x)cp~,o(x) is
a. tunneling energy, and y = fChCh'i@~'(x) ~'iy~'(x') i'v, (x—x') is a hard-core energy associated with the
double occupation of lattice site. ' When spin variables are associated with the states the tunneling
term and hard-core term admit particle motion through the lattice which is identifiable by the spin
variables. This particle motion is described by

~ t(RR ')'
H~=~ ——(b~( b~, t+b~) b~))(b~it b~)+b~i) b~)),PR'

an exchange Hamiltonian for the cooperative tunneling motion in which the intermediate state is a vir-
tua, l vacancy state. ' (We have dropped the state index. ) See Fig. 1.

Consider the addition of a single 4He atom at lattice site R. If the 4He atom does not tunnel, the
ground state of the crystal is 1V-fold degenerate (each of the degenerate states is designated by the lat-
ice site at which the 'He is found). If the 'He atom tunnels through the lattice this degeneracy is re-
moved. The tunneling motion of the 4He atom through the lattice is described by

0, = (—1/y)Z [t (AR'), b~, tb~, + t(RR ')b~, tb~~][t(RR')ob~, ~b~, + t(RR ')4b~, "b~~],

660



VOLUME 24, NUMBER 12 PHYSICS. L REVIEW LETTERS 2$ MARcH 1970

where bR, ~ creates a particle at R in the 'He
ground state, bR4~ creates a particle at R in the
~He ground state, and t(RR')~ and t(RR')4 are the
tunneling energies for 'He and 'He particles, re-
spectively. " The important motion for splitting
the degenerate ground state is given by the oper-
ator combination

~R3 ~R 3~R 4 ~R4 ~R3 ~Ry~R'4 ~R'3 R R'
+

where aR' ——bR4 bR, is an operator which creates
a mass fluctuation at R. The equation of motion
for a&+ ——+~a~+ exp(ik ~ R) is determined from Eq.
(6) and leads to the dispersion relation which in
the k'-0 limit is

h(u(k) = we, + —,'z(t, t,/y)(ka)',

where «~ is a finite energy shift, Z =the number
of near neighbors, b, = the near-neighbor dis-
tance, and the crystal has been assumed to have
simple-cubic structure. We regard a&' as the H' = Z~ ,b,M~(t)U~—' (8)

creation operator for a mass fluctuation wave of
wave vector k; Eq. (7) gives its dispersion rela-
tion.

We may understand this result in analogy to the
Li impurity in KCl" or to a single inverted spin
in a ferromagnetic system. ' In all of these cas-
es a tagged particle ( He, Li, or &) has n equiva, —

lent sites available to it. The tagged particle
moves among these equivalent sites via a tunnel-
ing process and splits the degeneracy that would
exist in the absence of that process. The excita-
tions which split the degeneracy are the mass
fluctuation waves, tunneling states, and spin
waves, respectively.

The mass fluctuation waves interact strongly
with the phonons. An estimate of the strength of
this interaction can be given by calculating the
rate at which energy is transferred from the pho-
nons to the mass fluctuation wave due to the per-
turbation

in the phonon Hamiltonian; here Mz(t) = (Mz
-M, )A(t) where A(t) is taken to be a, noise source
with characteristic frequency z J' =zt~t~/cp =z J.
The rate of transfer of energy between the pho-
nons and the mass fluctuation waves is

(c) de~/dt = (Nx)(1.2 x10')(5M/M)'h(zJ')'

x (T/gD)'y, T (p, pL, ), —

where P = (k~ T) ', x is the concentration of 'He
atoms, and OD is the Debye temperature of the
solid. Equating this energy change to the change
in energy of the 4He system,

(10)

we find

FIG. 1. Tunneling in pure 3He and mixtures. In (a)-
(c) the elemental tunneling motion involving a pair of
He atoms is shown schematically; bR~ be~ takes the

system from (a) to (b) with matrix element t; b&~ bR&
returns the system to the original state with a reversal
of spins. The intermediate state (b) is termed a virtu-
al vacancy state; it becomes a fu11 fledged vacancy
state when the hole (empty lattice site) and particle
(doubly occupied lattice site) wander away from one
another. In (d) -(f) the elemental tunneling motion by
which a 4He atom moves through the 3He medium is
drawn.

Here we have taken the specific heat of the He4

system to be that of a gas of excitations with the
dispersion relation given by Eq. (7):

(12)

where A =12z. At V= 20.0 cm'/mole and T =0.5'K
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we find T,'- 10 ' sec. This magnitude for the in-
trinsic process is on the order of the T, required
to explain the data of Hatton and Giffard. ' We
make the following conjecture. At low tempera-
tures the presence of 'He impurities leads to re-
laxation of the 'He exchange system according to
the topology" shown in Fig. 2. ' The Zeeman
system, exchange system, and 'He system come
to equilibrium in times short compared with the
time required for the energy in these coupled
systems to be dumped into the phonons by the
mass fluctuation waves. For this topology the
experimentally observed long time is"

1 1 k4

T, T, 0 +0,+0'

ZEENAN 'He

PHONON

FIG. 2. Energy Qow for NMB relaxation at T & 0.5 K.
An energy bath associated with the mass Quctuation
waves is introduced. This bath comes rapidly to equi-
librium with the He (exchange system) and provides a
strong link by which energy involved in particle motion
(i.e., the 3He bath and 4He bath) can be transferred to
the phonons.

where &4=x(~8)XzkB(J')', k, =
—,'zkBJ, and kz =

—,'k, (gp, B JI,)'. T, ' given by Eq. (13) has (1) the
correct Zeeman frequency and 'He concentration
dependence due to the topology, (2) the correct
temperature and volume dependence due to the
intrinsic relaxation time T, , and (3) the order
of magnitude of the experimentally observed T,

The fast time coupling the 'He bath to the 'He
bath is

with J'=J.
(4) There is every reason to expect similar ef-

fects, which however would be more difficult to
observe, for 'He in a nearly pure 'He lattice.

We gratefully acknowledge very helpful conver-
sations with R. C. Richardson and the hospitality
of the Laboratory of Atomic and Solid State Phys-
ics at Cornell University during the summer of
1969 when this work was begun.

1~&t,t,
8& cp

(14)

a time much shorter than T„as it must be. The
topology in Fig. 2 explains why v, 4 has been
observed in the NMR experiments where there
was every reason to expect it. '

In conclusion:
(1) We suggest that 'He impurities in 'He move

by a tunneling process and that these motions are
manifested as mass fluctuation waves.

(2) When the energy associated with the 'He
motion and the attendant phonon perturbation are
incorporated into the description of NMR relaxa-
tion phenomena, a quantitative and qualitative de-
scription of the low-concentration (x & 500 ppm)
and low-temperature NMR data resalts.

(3) The 'He bath introduced above provides a
qualitatively correct explanation for the anoma-
lous specific heat results of Bernier and Landes-
man4 and others. ' We do not wish to discuss this
subject at length here. " However, we note that
the extra specific heat observed in the experi-
ments of Bernier and Landesman4 is of the order
of magnitude of those we find for the 4He bath
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The specific heat of two spheres and of one cylinder of compacted powdered cerous
magnesium nitrate has been measured from T*=3.5 to 20 mK. Above 6.5 mK a correc-
tion of +0.3 mK must be added to convert T*(sphere) to the thermodynamic temperature
T, and +1.1 mK to convert 1'*(cylinder) to T. Below 6.5 mK, 7'*(sphere of powder)+0. 3
= T'*(cylinder of powder) + 1.1 mK = &~(single-crystal sphere) + e(Weiss constant). The
specific heat of cerous magnesium nitrate is given by C/nR =6.4/& -12/& .

Although nuclear magnetic resonance and Jo-
sephson junctions are promising techniques for
temperature measurement in the millikelvin
range, the susceptibility of cerous magnesium
nitrate (CMN) is still the primary thermometric
parameter because of ease and precision of mea-
surement. The latter feature is essential where
small temperature increments are being mea-
sured. In spite of the increased activity in this

. temperature region and of the importance of the
temperature scale, the T-T* correlation' '
(thermodynamic-magnetic temperature) below 6
mK has not been established with certainty nor
has the demagnetization correction for shapes
other than ellipsoids of revolution been evaluated.
Hudson' has recently published an excellent arti-
cle which summarizes the present status of the
CMN temperature scale and clearly points up the
confusion that exists. In the attempt to bring a
little order into the chaos, we have measured the
specific heat of two spheres and of one cylinder,
the three specimens machined from compacted
powdered CMN. By using the specific heat as a
transfer parameter, we have established the
shape correction from a cylinder and a sphere
of powder to single-cyrstal sphere, as well as
the coefficient of the second term in the specific-
heat expansion.

A mixture of 80% by volume powdered CMN
and 20% by volume powdered AgCl was compact-
ed around a fan of silver wires. The resultant
cylinder (2.54 cm diamx2. 54 cm high) was ma-
chined into either a sphere (1.892 cm diam) or a
cylinder (1.892 cm diam&&1. 892 cm high). The

specimens were inserted, in turn, into the same
coil form for measurement of the specific heat.
The coil form was made of epoxy and was wound
with an inner secondary of approximately 2000
turns, a compensating secondary of approximate-
ly 1000 turns, and a shimmed primary to pro-
duce a uniform field around the specimen. A
heater (100 0 nominal resistance) of Pt-5%W
alloy was wound on the silver wire tail which was
used to provide thermal contact to a chrome-
alum guard pill through a Pb superconducting
switch.

The temperature scale for each specimen was
set up by calibrating the mutual-inductance
bridge' against the vapor pressure of pure 'He
with the specimen in situ. Calibration commenced
at 600 mK and proceeded in five equal intervals
of 1/T to 1.6 K, the limit set by the quantity of
'He in the system. Cathetometer readings for
each manometer leg and the bridge readings
were plotted as a function of time; the calibra-
tion point was interpolated to the midpoint of the
measurement period. Pressures were corrected
to Torr; drifts during calibration were never
more than 1 mK/min. A least-squares fit to the
form M-MD=A/T was made for the constants
Mo and A which now determined the temperature
scale; M is the mutual-inductance bridge read-
ing.

The experiment was performed by raising a
super conducting solenoid around the chrome alum
and energizing the magnet to produce a field of
18 kOe. The initial cooldown to 1.2 K and the dis-
sipation of the heat of magnetization were achieved


