PHYSICAL REVIEW LETTERS

Volume 24

23 MARCH 1970

NUMBER 12

MICROWAVE DETECTION OF H₂¹⁸O

Francis X. Powell* and Donald R. Johnson National Bureau of Standards, Washington, D. C. 20234 (Received 5 February 1970)

Laboratory detection of a microwave absorption in $H_2^{18}O$ near 5.33 cm is reported. This observed signal has been assigned to a pure rotational transition between the 6_{16} and 5_{23} levels in the ground vibrational state of $H_2^{18}O$. Signals from these same two rotational levels for $H_2^{16}O$ have been detected in emission from several sources in the galaxy.

Emission from the 5_{23} - 6_{16} rotational transition in H_2 ¹⁶O at a wavelength of 1.35 cm has been detected from at least eight sources in the galaxy.¹ In this communication we report a laboratory observation of the transition between these same two rotational levels for the isotopic species H_2 ¹⁸O at a wavelength of 5.33 cm.

The eventual observation of this H₂¹⁸O transition in the galaxy should provide unique information on the $^{18}\mathrm{O}/^{16}\mathrm{O}$ galactic distribution and possibly give some insight into problems related to nucleogenesis. Terrestrial isotopic abundance for ¹⁸O compared with ¹⁶O is about 1/490. Observations on ¹⁶OH and ¹⁸OH in absorption in one particular source by Rogers and Barrett² give an estimate of the stellar abundance ratio of $^{18}O/$ $^{16}\mathrm{O}$ of 1/500 with some reservations due to the low intensity of the ¹⁸OH signals. Since the observed $H_2^{16}O$ emission is very intense, with the strongest lines in the W49 source implying a brightness temperature possibly larger than $50\,000^{\circ}$ K, the chances of detection of signals from H₂¹⁸O may be more favorable than for the signals from ¹⁸OH.

Our laboratory measurement was based on a recent report by Fraley, Rao, and Jones³ of the infrared spectrum of $H_2^{18}O$. Their reported values for the 6_{16} and 5_{23} levels yield a difference

of 0.194 cm⁻¹ or about 5820 MHz. We have conducted a search of this region employing a Stark modulated parallel-plate microwave spectrometer and detected a transition in ¹⁸O-enriched water at

$\nu = 5625.147 \pm 0.015$ MHz.

The intensity of the observed transition is in good agreement with the intensity of the $6_{16} + 5_{23}$ transition in $H_2^{16}O$ at 22 235.08 MHz if one takes into consideration the differences in frequency and the enrichment of the sample (40 at.% ¹⁸O normalized to 0.02 at.% D). The Stark effect appears comparable with that for $H_2^{16}O$. However, a detailed dipole-moment measurement has not yet been made. The indicated error limits are actual measured values obtained by varying the frequency of the standard oscillator over the limits indicated.

We wish to thank Professor William S. Benedict for helpful and encouraging discussions.

^{*}Present address: The Catholic University of America, Washington, D. C.

¹S. H. Knowles, C. H. Mayer, A. C. Cheung, D. M. Rank, and C. H. Townes, Science <u>163</u>, 1055 (1969). ²A. E. E. Rogers and A. H. Barrett, Astron. J. 71,

A. E. E. Rogers and A. H. Barrett, Astron. J. <u>71</u>, 868 (1966).

³P. E. Fraley, K. N. Rao, and L. H. Jones, J. Mol. Spectry. <u>29</u>, 312 (1969).