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energy difference in the Hartree approximation and also assume that I o.') and la) have the same spa-
tial wave functions. Then the symmetry energy (U, say, a positive quantity) is given by e„-e,'
=-u„, =-(2TO)'~'U„, z on comparison with the second member of Eq. (15). Equation (14b) now reduces
to a 2 X2 determinantal equation for the roots Ez. To leading order in (2T,) '«1 one has Eg
=u„,/2To and E~g ez ——U —U&~/2To with renormaiization coefficients Z~=(2TO+1) ' and Zzz
=2TO(2T, +1), respectively. It is clear that under these approximations the quasiparticle states at
energies E~ and &~~ correspond to the analog and antianalog states of the Lane model, containing, re-
spectively, Zz and Z~~ of the single-particle strength, and therefore that these states have good iso-
spin (T, +-,', T;—,') and (T;,', T;——,').

The ingredients of our discussion —an exact symmetry of the nuclear Hamiltonian, its breaking by
the HF vacuum, and the occurrence of a zero-energy analog excitation —are strongly reminiscent of
the situation encountered in relativistic fieM theory' and in nonrelativistic many-body problems. ' The
precise relationship, if any, between the analog excitation and the massless guage fields and Gold-
stone bosons is being investigated.
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The evolution of an elongated rotating configuration by gravitational radiation and the
possibility of a secular instability being induced by it are considered in the context of the
classical (homogeneous figures of Maclaurin and Jacobi. The triaxial Jacobian ellipsoid
evolves in the direction of increasing angular velocity and approaches {exponentially) the
point of bifurcation where it ceases to radiate. Further, radiation reaction does not
make the Maclaurin spheroid secularly unstable past the point of bifurcation.

In a recent paper i the equations of hydrody-
namics governing a perfect fluid have been de-
rived, consistently with Einstein s field equations
of general relativity, to sufficient approximation
that the terms representing the reaction of the
fluid to the emission of gravitational radiation
are explicitly present [see Eq. (8) below]. With
the aid of. these equations, two problems (which
have arisen in current discussions of the pul-
sars' ') in the theory of gravitational radiation
can be solved. In this Letter, we formulate these
problems, present their solutions in a simple
realizable context, and conclude with some brief

comments on the bearing of the results derived
for the problem of gravitational collapse.

The formulation of the problems. —The first
problem concerns the evolution of a rotating fluid
mass emitting gravitational radiation. The sec-
ond problem concerns the possibility that the dis-
sipation of energy by gravitational radiation in-
duces "secular instability" in the manner that
viscosity sometimes does.

We shall consider the foregoing two problems
in the context of the classical theory of uniformly
rotating homogeneous fluid masses. ' In this the-
ory it is known that along the sequence of axially
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0'/m Gp = 2B„, (2)

which determines the angular velocity 0 that is
to be associated with each Jacobian figure. In

Eqs. (1) and (2), A,. and B;, are certa. in de-
finite integrals defined by (E.F.E., 521)

P oo dRA. ...=a a a
b, (a. '+u)(a '+u)-

1 J

B,. -. . .= a,a2a,
Jp

QdQ

b, (a, '+u)(a '+u)

symmetric configurations —the Maclaurin spher-
oids —a point of bifurcation occurs where a new

sequence of triaxial ellipsoids —the Jacobi ellips-
oids —branches off; and further, that the Mac-
laurin spheroid becomes secularly unstable at the
point of bifurcation (cf. E.F.E., 537).

The Maclaurin spheroid, because of its axial
symmetry, cannot radiate gravitational waves,
but the Jacobi ellipsoids can and will. The first
of the two problems, in this context, concerns
the consequent evolution of the Jacobi ellipsoid.
The second problem concerns the secular stabili-
ty of the Maclaurin spheroid at the point of bifur-
cation when allowance is made for the dissipation
of energy by gravitational radiation during its
os cillations.

The evolution of the Jacobi ellipsoid by gravi-
tational radiation. —The structure of the Jacobi
ellipsoid is governed by two equations (E.F.E.,
539): the equation

2 2 = 2g, a A„=a, A„
which determines the geometry (i.e., the ratio of
the axes a„a„and a,) of the ellipsoid, and the
equation

is given by

dI. /dt = —(32G/5c') (I» —I»)'f?5.

For the Jacobi ellipsoid this equation gives

d[(a,'+ a,') Q]/dt

(4)

= -(32GM/25c') (g,2 —a2') 0, (5)

where M denotes the mass of the ellipsoid. ' On

the assumption that the emission of gravitational
radiation alters the figure and the speed of rota-
tion of the ellipsoid at a rate that is slow com-
pared with its instantaneous rate of rotation —an
assumption that is fully justified under the cir-
cumstances in which Eq. (4) is applicable —the
evolution of the ellipsoid is uniquely determined
by Eq. (5) and the requirements that Eqs. (1) and

(2) continue to specify the figure and the a.ngula, r
velocity at each instant and that a,a,a, remain
constant (on account of the assumed homogeneity
of the configuration).

The result of integrating Eq. (5), together with
the subsidiary conditions provided by Eqs. (1)
and (2) and a,a,a, = constant, is exhibited in Fig.
1. For the sake of definiteness it has been sup-
posed that the initial Jacobi ellipsoid (at t= 0) is
the one that is the most elongated compatible with
stability, namely, a, /a, =0.4322 and a,/a, =0.3451,
where 0'/mGp =0.2840 (E.F.E., p. 110).

It will be observed that the angular velocity in-
creases during. the evolution of the Jacobi ellip-
soid. This result is indeed to be expected since
along the Jacobian sequence the angular velocity
decreases while the angular momentum increases
(see Figs. 5 and 6 in E.F.E., p. 79). An inference

h' = (a,'+ u) (a,'+ u) (a,' + u). (3)

0.60

Also, in Eq. (2), p is the a.ssumed constant densi-
ty of the configuration and G is the constant of
gravitation.

The evolution of the Jacobi ellipsoid as it radi-
ates gravitationally can be determined quite sim-
ply without an explicit appeal to the full equations
of motion. Thus, in the standard linearized the-
ory of gravitational radiation (with which the de-
tailed theory of Ref. 1 is consistent), the rate of
radiation of the angular momentum 1. by a mass,
rotating uniformly with an angular velocity 0 and
whose principal components of the moment-of-in-
ertia tensor in the equatorial plane are Iyy and I22&
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FIG. 1. The evolution of the Jacobi ellipsoid by
gravitational radiation. The ordinate measures the
angular velocity of rotation && in the unit ~Gp ', and
the abscissa the time 7' in the unit T defined in Eq. (7}.
The arrow indicates the angular velocity which the el-
lipsoid attains as it approaches, asymptotically, a
spheroidal nonradiating state.
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(l-a, /a, )-constant &&e (6a)

(QM, *—0)—constant && e (6b)

where Q~„*=0.6117(7(Gp)'" denotes the angular
velocity of the limiting Maclaurin spheroid and w

of some general importance in this connection is
that the energy dissipated by the emission of
gravitational radiation need not necessarily be at
the expense of the rotational kinetic energy only:
It could equally derive from the potential and/or
the internal energy.

From Eqs. (1), (2), and (5) it can be shown that
the Jacobi ellipsoid approaches the nonradiating
Maclaurin spheroid, at the point of bifurcation,
asymptotically in the manner

is the time measured in the unit

T = (25/18) (a/Rs )'(a/c). (7)
where a = (a,a,a,)"' is the constant mean radius
of the ellipsoid, c is the velocity of light, and Rs
= 2GM/c' is the Schwarzschild radius.

It may be noted here that for a = 20 km and I= 1
solar mass, T = 2.90 &10 ' sec so that the time
constant in Eq. (6b), namely, 8.02T, is 0.232 sec
in contrast to the period of rotation, 2.S2&10
sec at the point of bifurcation. The assumption
that the Jacobi ellipsoid evolves "adiabatically" is
thus amply justified under these circumstances.

The secular stability of the Maclaurin spheroid
at the point of bifurcation. —The effect of radia-
tion reaction on the stability of the Maclaurin
spheroid cannot be determined without an explicit
knowledge of the equations of motion including
the terms representing this reaction. In a frame
of reference in which the center of mass is at
rest. these terms are [Ref. 1, Eq. (101)]

1, (5) dvn 1 dQoo

df 2P ~ dt
d (). 1 ()8~ & d I(( 3 d I

Pdt ( pQpG, ) 2PQp p s 5Px~G dp 5 Pxp G

where

and

(,)
(x -x )(x~-x~')

V X—X
(9)

In Eqs. (8) and (9), I 8 denotes the moment-of-inertia tensor and v the velocity component. Equa-
tions (8) and (9) are written in the notation of Cartesian tensors with the summation convention over
repeated indices; the Greek indices refer to the spatial coordinates and run through 1, 2, and 3.

In treating the stability of the Maclaurin spheroidwe , must first transform the terms (8) to a, rotat-
ing frame of reference. In view of the high order of the time derivatives that occur in these terms,
the required transformation is somewhat complicated; but we shall not give any of the details here.

Since the terms (8) vanish for the unperturbed Maclaurin spheroid, it will suffice to evaluate them
for the perturbed configuration. Describing the perturbation (in a uniformly rotating frame) in terms
of a Lagrangian displacement of the form $(x}e ', where A, is a characteristic-value parameter to be
determined, we can treat the present problem exactly by the "virial method" described in E.F.F.,
Chaps. 2 and 5. In this method the relevant perturbation equations are expressed in terms of the

quantity

V, s= J p($ x~+$ Bx )dx. (10)

For determining the effect of the radiation reaction on the stability of the Maclaurin spheroid, it
will suffice to consider the mode of oscillation which becomes neutral at the point of bifurcation and

dynamically unstable further along the sequence. For this mode of oscillation V&& =0 [cf. E.F.E.,
533(b)]; and the procedure outlined in E.F.E., 5((33 and 39, suitably adapted to this problem, leads
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to the pair of equations

P'+2(2B„—n')+2DQ, ] V„+ (Xn ——,'DQ, )(V„—V„)=0,

[A'+ 2(2B„-Q') +2DQ] (V„—V„)—4(AQ —2DQ, )V„=0,

where A.
' and 0' are measured in the unit gGp,

D = Gl„(~Ci )'~'c -'

is a dimensionless constant, and

Q, = 2x(x' —12n') (n' —2B„)—-,'z'+ 8~'n'+ 16'n',

Q, = -8Q(3x'-4Q') (n'-2B„)+ 8~'n -(128/5) n'.

Equations (11) and (12) lead to the characteristic equation

o' 2(x-n —2(2B„-n') + 4iD(2Q -o)'[(2B„—n') + ~~0 (2Q —o) (4n+ 3g)] = 0,

where we have written io in place of X. Letting

(12)

(14)

(15)

(16)

where o0 is the characteristic frequency in the absence of radiation reaction, we find that to first or-
der in D,

bo. = -iD[2(2Q -v, )'/(o, -n)] [(2B„—n') + —,', (2Q —(x,)(4Q+ Sa,)].
By making use of the equation satisfied by 0„
equation (17) can be brought to the simple form

ac = —-', iD(2Q -v, )'/(o, —n). (18)

In the absence of radiation reaction, Eq. (15)
allows two roots:

o "&=n-(4B -n')"'
0 ll

i6(T = -', D[(4B„-n') "'-n] '/(4B „-n') '", (20)

while the corresponding equation, giving the ef-
fect of a kinematic viscosity (v) of the fluid on
the mode 0,"&, «s

(»)a,' (4B„-n')'~'
From Eq. (20) it follows that while the mode g, ~'&

is damped by gravitational radiation prior to the
point of bifurcation at 0'= 2B», it is amplified in
the interval 4B»& 0 &2Bll Thus radiation reac-
tion, like viscosity„makes the Maclaurin spher:—

i~o =—

o &'~=n+(4B -n')'&'
0 11

It is known (E.F.E., p. 99) that viscosity induces
a secular instability of the mode 00~'~ which be-
comes neutral at the point of bifurcation where
Q'= 2B»„We shall now show that radiation re-
action induces a similar instability of the mode
a0" which acquires a frequency 20 at the same
point.

For the mode v,"' Eq. (18) gives'

oid unstable beyond the point of bifurcation; but
the mode that is made unstable by radiation re-
action is not the same one that is made unstable
by viscosity.

Some general comments. —The foregoing solu-
tions to two definite problems in the theory of
gravitational radiation suggest that the following
considerations may be relevant to the theory of
gravitational collapse following a supernova out-
burst.

A rapidly rotating highly condensed configura-
tion may, in the first instance, form as a result
of the collapse; and it is not unlikely that the ro-
tating configuration may, in fact, be similar to a
Jacobian ellipsoid at the limit of its stability.
Then by gravitational radiation, its angular velo-
city will increase (in the manner illustrated in
Fig. 1) and the object will approach a point of bi-
furcation where the object becomes spheroidal
and nonradiating. But once it reaches the point
of bifurcation, radiation reaction will make the
configuration secularly unstable; and it is pos-
sible that further development may proceed in
the direction of fragmentation. In any event, the
fact that radiation reaction can induce secular in-
stabilities must have an important bearing on
what may happen during the late stages of gravita-
tional collapse.

I am indebted to Miss Donna Elbert for carrying
out the integration of Eq. (5) exhibited in Fig. 1.
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6lt should be noted that d{aP+a22)/dt and dQ/dt both

behave like (+»-&&) as one approaches the point of bi-
furcation.

~The singularity which this expression manifests at
~ =4B»» (where dynamical instability sets in) is spuri-
ous: Eq. (15), without the substitution (16), leads to
the result &= ~+(0.4DO~}» ~(1+i) at this point.

EVIDENCE FOR THE EXISTENCE OF A Z* t

S. Kato, P. Koehler, T. Novey, and A. Yokosawa
Argonne National Laboratory, Argonne, Illinois 60439

G. Burleson
Northwestern University, Evanston, Illinois 60201

(Received 1 December 1969)

Results of a phase-shift analysis with and without the use of a Hegge-pole model in
E'P elastic scattering from 0.86 to 1.95 GeV/c are described. We have obtained four
possible solutions, all of which indicate resonantlike behavior in one partial-wave am-
plitude. Three of our solutions yield a I'3~2 partial wave with a behavior consistent with
the Breit-%igner resonance formula. The properties of such a Z* resonance are de-
scribed.

We have reported earlier a preliminary phase-
shift analysis of K'P elastic-scattering data from
0.86 to 1.95 GeV/c. ' Since then an extensive ran-
dom search for solutions has been carried out.
The data used in the analysis include new polar-
ization measurements2 at 1.89 GeV/c which we
obtained using a butanol-alcohol target~ at 26 ko.
These new measurements are in good agreement
with the old ones which were taken with a lantha-
num-magnesium-nitrate target. We have also in-
cluded recent polarization data at 0.86 and 0.96
GeV/c by Andersson et al. ' We have obtained
four possible solutions, all of which indicate res-

onantlike behavior in one partial-wave amplitude.
The same results were obtained when analysis
was repeated using predictions for high partial
waves from a Regge-pole model.

In our energy-independent analysis, we have
found typically about 50 solutions (){'/NDF ~ 2. 5)
at each momentum. By examining all the partial
waves simultaneously, we noted that these solu-
tions clustered into several areas on Argand dia-
grams. To select the best of these, we first re-
quired that each group vary with increasing mo-
mentum on the Argand diagram in a smooth, con-
tinuous way in each partial wave; this test elimi-

Table I. Outline of phase-shift solutions.

Momentum
{GeV/c)

No. of
parameters

No. of
data points

Values of g
II III

0.86
0.96
1.21
1.37
1.45
1.70
1.95

10
10
10
14
14
14
14

42
45
64

59
110

49
43
27
85
68
30

134

84
57
50

111
74
30

134

84
56
50

111
76
29

134

63
57
27
97
86
29
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