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For nuclei with N &Z, isospin invariance is explicitly broken in the Hartree-Fock (HF)
approximation. It is shown that isospin polarization correlations in the HF ground state
restore this symmetry and lead to a natural framework for a microscopic description of
analog states. We discuss the approximations under which the Lane potential model is
obtained.

In this note we discuss the question of isospin invariance in connection with the shell-model descrip-
tion of analog states in heavy nuclei. If all electromagnetic effects (including the neutron-proton mass
difference) are suppressed, the nuclear part of the many-body Hamiltonian H commutes with all com-
ponents of the isospin operator. In particular, [T,H]=0. If

~ y,) is any eigenstate of H (for example,
the ground state corresponding to a particular neutron number N and proton number Z), this immedi-
ately implies that the analog state T

~ yg is also an eigenstate with the same energy eigenvalue. This
property, and with it the whole framework of isospin invariance, may be lost in any approximate
treatment of the eigenstates of H. The Hartree-Fock (HF) approximation for a system with N &Z is a
case in point. The HF ground state

~ 0) does not have good isospin since (even without electromagnetic
interactions) equivalent neutron and proton states have different wave functions on account of the pres-
ence of the symmetry-potential terms associated with the excess neutrons. The breaking of isospin
invariance has to do with the approximations introduced, and not with the forces.

%e show below that this trouble develops in HF due to the neglect of neutron-protron correlations in

~ 0), and that an isospin-conserving description of at least the ground state is recovered by including
such correlations within the framework of the random phase approximation (RPA). '

Consider a system of N neutrons and Z protons with a general two-body interaction which we write
in the form V= V'+ V P after separating off the charge exchange part (P' is the usual charge-ex-
change operator). The HF states a, 6, ~ ~ ~ for neutrons and n P .~ ~ for protons may be used as basis
for the definition of creation and destruction operators (e.g. , n, creates a neutron in state a, etc.).
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The Hamiltonian may then be written as

+o+Z u .Pu Pn +Zea na na ~ +2ZVnSys Pu PS Pspy +aZVabcd na nb ndnc ~
p I?. f . 1

+ZVaubS na Pn PSnb:»

where e, and e„~ are the HF single-particle energies, the colons denote normal ordering of opera-
tors with respect to the HF vacuum 10), while &c =(0 (B l0) is the HF ground-state energy of the parent
system (i.e. , the one with% neutrons and Z protons), and V, „bs ——V, „bBD—V, „Bb'. The last three
terms in (1) represent interactions which are not included in the HF fields. Note that since both sets
of HF states are complete, one may, for example, also define an operator which creates a proton in

a neutron single-particle state, p, =pup„(o. la), which will in general be a linear combination of
creation operators pn with the same angular momenta but different radial quantum numbers.

Proton-particle, neutron-hole excitations. —The state obtained by operating on [0) with the isospin
lowering operator T will not have the same energy as l0) whereas we know that the true analog state
T i y,) and the parent ground state I y,) must have exactly the same energy (when electromagnetic in-
teractions are suppressed). Since the isospin lowering operator

T =Q p, yn, =Q p„yn„= Q (via)p„yn, (2)

has the structure of creating protons and neutron holes in the parent (N, Z) in order to produce the an-
alog (N 1, Z-+1), we shall examine the general particle-hole excitation of this type which is linea. r in
particle-hole operators. Applying the equation-of-motion method to the pair operator P& n~ we find,
after linearization, ' that

[H, Py nc]=(&y &c )Py-nc+(Py Pc")Z-csbyPS nb
bg

where py~ -—(0 IPy tPy l0) and p =(0 Inc n, IO) denote the proton and neutron densities in the HF vacuum
i0). Since both protons and neut. ". ons have sharp Fermi surfaces in the HF approximation, Eq. (3)
couples proton-neutron hole pairs on opposite sides of their respective Fermi surfaces only. We
therefore look for oscillatory solutions of the usual form'

(Z+ Bb P S nb ZS BbP S nb)
Sb gb

where the barred (unbarred) subscripts now refer to states which are occupied (unoccupied) in i 0).
The operator Oz~ thus creates excitations in the analog system when acting on the correlated ground
state |0) of the parent system. The conditions [H, O& ]=~~0„and [B, O~]= ~~0~, tog-ether with the
subsidiary condition

0~i 0) =0, for all A,

i.e., that i0) does not contain any of the excitations X, lead to RPA-like equations for the eigenfre-
quencies ~), and amplitudes x and y:

Ply'

(e ec —~x)x c-Q Vb cBXBb —Q Vb, B y Bb =0,
eb sb

(—ey +e '+(uq)yy —Q Vby s y Bb —Q Vby Bxsb =0.
gb 6b

(6a)

(6b)

The eigenfrequencies ~& are excitation energies of th. analog system as measured from the. ground
state of the parent system.

Now the T operation has the structure of t'ie operator 0 z with eigenfr equency ~ &
——0 if we truncate

it in the same way, i.e. , replace Eq. (2) by

T- = 2 (~ I ~)pn'n-a + 2 (~ I ~)pn'n' (2')

The isospin lowering operator thus ereastes an eigenvibration (a. monopole isospin vibration) in the
analog system provided that

x„-,- (n i a), y-„, ——(K i a)
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a.re solutions of Eqs. (6) at frequency ~~=0. This is indeed the case. By completing the sums [the
minus sign introduced by Eq. (7) allows one to sum over complete sets of single-particle states with
impunity] and using the fact that the HF Hamiltonians X q and X,q' for protons and neutrons are di-
agonal and do not connect occupied and unoccupied states, one finds that the interaction terms in Eq.
(6a) reduce to

-g ~r~, s(PI &) +2 ~by, g (Pl&)=-Zl7g~ g +pl'8~ g =-(&~ &-~~ ) =-(ey -e-, )(ylc),
b8 bs b 8

which just cancels the first term. Notice that this result does not obtain in the Tamm-Dancoff approx-
imation (TDA) where ground-state correlations are neglected. '

We have thus shown that I0) and T I0) have the same energy, i.e. , r creates the ana, log state of
Io). Furthermore, T+I0) -=T "10)=0 according to the subsidiary condition (5). Thus (a) Io) has a,

good isospin T equal to its maximum projection T, = T, = 2(N —Z), i.e. , (T, T,) =(To, T,), and (b) T I 0)
must have isospin quantum numbers (T„T,—1).

The fact that ground-state correlations restore the isospin invariance which is violated in the uncor-
related ground state is of course no surprise. Exactly the same thing happens for example in the case
of the center-of-mass motion of a nucleus where the spurious ~= 1,T = 0 state appears. The intro-
duction of ground-state correlations shifts this state to zero excitation energy. ' There is one impor-
tant difference in our case, however. The analog state, being in a neighboring nucleus, is not a spur-
ious state of the parent system but rather a collective isospin oscillation.

We note two further properties of the RPA-type solution we have constructed: (c) Since r Io) has a
good isospin, one knows, quite generally, that the normalization integral

&o[ r,r [ o) = &ol[r+, r ]I 0) = ».=&-~. (8)

Calculating explicitly from (2'), one finds exactly

[r., T-]Rp~ =2 I(~l ~) I'-2 l(~l~) I'=&-z.
na 0.' g

(d) The remaining states O~ Io) with uzgo all have isospin (T, 1, T —1). —We prove this by demon-
strating that T+O&tlo) =[T+, Oz "]I0)=0 for &uzgo. The commutator is

[T,Ox ]RpA 2 xa & (& I
&)*-2 p-„, (n[a)*,

which vanishes by the orthogonality condition on two RpA solutions. ~

Isospin polarization. —%e investigate the modification of single-particle motion due to isospin core
polarization within the RPA. Microscopically, the incident proton excites particle-hole excitations in
the I0) core of a proton-neutron hole character by charge exchange, i.e. , an isospin core polarization
results. ' As a consequence, the proton single-particle states are redistributed over the analog and
antianalog states of the compound system. The effects of the polarization process on single-particle
motion may be described by constructing the proton-particle, neutron-hole Green's function, or polar-
ization propagator:

-iE(1234; &u) = J dt e' '&cp, [n, t(t)p, (t)p, ~(0)n, (0) [ y,)

in the ladder approximation. The associated diagram summation techniques are standard (see, e.g. ,
Ref. 2 for technical details) and we shall mainly quote results. In our case the ladder approximation
to E(1234; ~) consists of summing, to all orders, a selected set of diagrams of which the first three
terms are shown in Fig. 1(a). Both charge-exchange and -nonexchange diagrams are included, the
hole lines always being neutrons and particle lines protons. Reserving odd (even) numerals for proton
(neutron) states, the summation of the series in Fig. 1(a) leads to the equation

p n n p

where 5 is a positive infinitesimal and where V„» is again V„» -V„»'. As is well known, ' the homo-
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FIG. l. Loudest order diagrams for (a) isospin polar-
ization propagator, and (b) single-proton Green's func-
tion.

The modification to the single-particle motion of a proton due to the core polarization it induces is
directly expressed in terms of the proton self energy Z„(E). The function Z„(E) is given approximate-
ly by summing the diagrams shown in Fig. 1(b) to all orders. Clearly all this does is to replace the
bubble in the first diagram of Fig. 1(b) by the full polarization propagator. The result, for the proton
self-energy, is

Z„(E)=g(E-e, -~~+«) 'lg&&ns. Xg~ +E I'~n6. &s~l'
a, X gb Bb

after using Eq. (12) and identifying x~q =(0 Ing, P gl~q), etc. Only the charge-exchange part of the
two-body force excites the core excitations shown in Fig. 1(b).

The self-energy (13) contains complete information on the modification of the single-particle state
o.. We read off from Z„(E) (a) the effective matrix element for exciting core vibrations,

(13)

'Una~=Z I'~as' XB~+Z V~asa Xe~,
Bb gb

(b) the proton-quasiparticle spectrum given by the roots E; of

geneous part of Eq. (11) is identical in content and structure with the RPA equations (6a) and (6b). It is
useful to expand E(1234; m) in RPA eigenstates:

E(1234' ) = -g (0 I+2 pa I up)(~y Ips B410) (12)
(d-4V y +15

Es en~ Za-(E I) =-0

(c) the renormalization of the single-particle state,

Z;= [I—BZ„/BE]E

(14b)

(14c)

(d) the contribution to the optical potential for an unbound proton of energy E coming from isospin pol-
arization excitations of the core,

ImZ (E, ) =- g IV„,„I'~(E-e,'- (14d)

These items are discussed fully in a forthcoming publication. Here we only wish to point out briefly
the connection with the Lane model for the isospin splitting of single-particle states in heavy nuclei.
We first note that the number of solutions of Eq. (14b) depends on the number of core vibrations I~&)
and unoccupied neutron states Ia) which are allowed to contribute to Z„(E). We now argue that (i) the
matrix element 'U, z will be largest for the collective state among the vibrations Ia~), i.e. , for the
analog state with +~=0, and (ii) the charge-exchange matrix elements Vq 8, ' will be largest if the
proton and neutron states In) and la) have the same number of radial nodes, i.e. , are "principal part-
ners. " Thus, keeping only the analog state in the sum over A and the principal partner of n in the sum
over a, we have

Z.(E) =E "". , , ~...=(».) -"'[Z~.—..—.'-Z~~. s.'], (»)— 8 b 8

the latter expression being the result of inserting the (normalized) coefficients (7) for the analog state
into Eq. (14a).

The essential feature of the Lane model, viz. that the transition matrix element 'U, z be proportion-
al to the symmetry energy (e„~—e, ) of the principal partner levels, now emerges if we calculate this
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energy difference in the Hartree approximation and also assume that I o.') and la) have the same spa-
tial wave functions. Then the symmetry energy (U, say, a positive quantity) is given by e„-e,'
=-u„, =-(2TO)'~'U„, z on comparison with the second member of Eq. (15). Equation (14b) now reduces
to a 2 X2 determinantal equation for the roots Ez. To leading order in (2T,) '«1 one has Eg
=u„,/2To and E~g ez ——U —U&~/2To with renormaiization coefficients Z~=(2TO+1) ' and Zzz
=2TO(2T, +1), respectively. It is clear that under these approximations the quasiparticle states at
energies E~ and &~~ correspond to the analog and antianalog states of the Lane model, containing, re-
spectively, Zz and Z~~ of the single-particle strength, and therefore that these states have good iso-
spin (T, +-,', T;—,') and (T;,', T;——,').

The ingredients of our discussion —an exact symmetry of the nuclear Hamiltonian, its breaking by
the HF vacuum, and the occurrence of a zero-energy analog excitation —are strongly reminiscent of
the situation encountered in relativistic fieM theory' and in nonrelativistic many-body problems. ' The
precise relationship, if any, between the analog excitation and the massless guage fields and Gold-
stone bosons is being investigated.
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The evolution of an elongated rotating configuration by gravitational radiation and the
possibility of a secular instability being induced by it are considered in the context of the
classical (homogeneous figures of Maclaurin and Jacobi. The triaxial Jacobian ellipsoid
evolves in the direction of increasing angular velocity and approaches {exponentially) the
point of bifurcation where it ceases to radiate. Further, radiation reaction does not
make the Maclaurin spheroid secularly unstable past the point of bifurcation.

In a recent paper i the equations of hydrody-
namics governing a perfect fluid have been de-
rived, consistently with Einstein s field equations
of general relativity, to sufficient approximation
that the terms representing the reaction of the
fluid to the emission of gravitational radiation
are explicitly present [see Eq. (8) below]. With
the aid of. these equations, two problems (which
have arisen in current discussions of the pul-
sars' ') in the theory of gravitational radiation
can be solved. In this Letter, we formulate these
problems, present their solutions in a simple
realizable context, and conclude with some brief

comments on the bearing of the results derived
for the problem of gravitational collapse.

The formulation of the problems. —The first
problem concerns the evolution of a rotating fluid
mass emitting gravitational radiation. The sec-
ond problem concerns the possibility that the dis-
sipation of energy by gravitational radiation in-
duces "secular instability" in the manner that
viscosity sometimes does.

We shall consider the foregoing two problems
in the context of the classical theory of uniformly
rotating homogeneous fluid masses. ' In this the-
ory it is known that along the sequence of axially
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