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We present an electromagnetic interaction Hamiltonian for an arbitrary N-particle sys-
tem with any mass, charge, spin, and magnetic moment which is consistent with the low-
energy theorem for Compton scattering and the Drell-Hearn-Gerasimov sum rule to or-
der (mass) . It is related to the sum Of individual Foldy-Wouthuysen interactions by a
unitary trans formation.

The correct form of the electromagnetic inter-
action for a system of loosely bound nonrelativis-
tic particles has not ever been seriously in ques-
tion, at least in those cases where "exchange"
currents play no role. If, however, one is inter-
ested in terms of relativistic order, i.e. (mass) ',
then it has previously been assumed that the cor-
rect interaction for a collection of particles is
obtained from the usual Foldy-Wouthuysen (FW)
reduction for one particle in an electromagnetic
field by summing the one-particle interactions
over all the particles of the system. This pro-
cedure recently came into serious question when
it was pointed out by Barton and Dombey' that for
loosely bound systems it yields results for ab-
sorption cross sections which violate the Drell
and Hearn' and Gerasimov' (DHG) sum rule. It
was further remarked by Barton' that the problem
arose from the failure of this form of the inter-
action to yield the correct low-energy theorem
(I ET) for Compton scattering first established
by Low' and Gell-Mann and Goldberger' and later
extended by others. "

The seriousness of this shortcoming is emphas-
ized by the observation that the LET and DHG
sum rule depend only on fundamental assump-
tions of Lorentz covariance, gauge invariance,
and time-reversal invariance. The LET also as-
sumes an energy gap separating the state in
which elastic Compton scattering occurs [for
brevity we call this the "ground" state of the sys-
tem, which usually it is, but need not be] and any
other state except those belonging to the same
angular-momentum multiplet, while the DHG
sum rule also requires that there be no subtrac-
tion constant in the dispersion relation for the
spin-dependent part of the forward Compton scat-
tering amplitude.

Theorems of such impeccable lineage clearly
demand proper respect by electromagnetic (EM)
interaction Hamiltonians. Recently, Osborn' and
Brodsky and Primack' have proposed EM-inter-
action Hamiltonians purportedly free of these dif-

ficulties. In addition to the usual FW terms
there are additional two-particle terms which
(interestingly!) are strongly nonlocal with re-
spect to the nonrelativistic coordinates of the
particles. In the present Letter we extend and
clarify these important results by submitting the
results of calculations which show: (a) The Ham-
iltonian of Brodsky and Primack yields results
consistent with the LET and DHG sum rule only
when the magnetic moment of the system arises
purely from spin contributions. (Note added after
submittal: This fact was recognized by Brodsky
and Primack in Ref. 2 of their second paper. It
was overlooked by the present authors since they
were working from a preliminary version of the
preprint of that paper. ) (b) Terms which Osborn
obtains but removes as not contributing to the
spin-dependent amplitude in the special case he
considers can in fact contribute to the spin-de-
pendent amplitude and are necessary to obtain
consistency with the LET and DHG sum rule when
part of the magnetic moment of the system arises
from orbital motion. (c) The results can be ex-
tended to systems composed of any number of
particles with any spins, charges, and magnetic
moments (intrinsic or normal)" to obtain an EM-
intera, ction Ha.miltonian to order (mass) ' which
is consistent with the theorem and sum rule.
(d) The Hamiltonian is related to the FW reduced
Hamiltonian by a unitary transformation. Its
uniqueness and extensibility to higher order in in-
verse masses are still in question and for their
clarification require the analysis of problems as-
sociated with interparticle interactions, exchange
currents, and possibly the form of higher-mo-
ment interactions.

Interaction Hamiltonian. —The usual FW reduc-
tion of the Hamiltonian describing the interaction
of a collection of N loosely bound particles of
spin 0, 2, or 1 with an electromagnetic field
yields the following result

+FW HFW ++FW
E M (y) (2)
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except g„'=-0for s, =0. Here m„e„p.,', and s„represent the mass, charge, intrinsic magnetic
moment, and intrinsic (canonical) spin of particle v, respectively, and the radiation gauge V„A(r„)
=0 is assumed. All summations will be over the index p and will represent sums over all the parti-
cles ~

HF z" contains the collection of Darwin terms and quadrupole-moment terms. Higher-spin parti-
cles are expected to retain the form presented in IIF~ ', but with additional higher-moment terms
present in IIF ~~~'~.

In the absence of interaction, the canonical relativistic dynamical variables" r„p„ands, may be
separated into external or (c.m. ) variables R and P, and internal variables p„7„,and g„."~" The
variables p„and ~„arenot all independent and satisfy the following conditions: Qw „=0,and to order
(mass), Qm„p&/Mz ——0, where MT ——Qm&. The internal spin variable cr, is defined to be the intrin-
sic (canonical) spin s„asobserved in the c.m. frame of the system rather than the c.m. frame of par-
ticle v. The total spin of the system is then defined to be

S =- Q (p ~
X1l ~ + g ~),

At least to order (mass), the internal variables p„,7„,and a„commute with the external vari-
ables R and P, and except for the fact that the variables p„and m, are not all independent, behave like
r„p„ands„,as indicated by the commutation relations below:

(i) [C
' o "]=[~ ' ~ "]=[( '

p "7=[ ' ~ "]=0

(ii) [v,.",p, "]=-z[a„„-m„/Mr]a;,,

(iii) [&j p &j ]=15„p&1jkvp

(iv) [S;,SJ]=ac;,&Sq,

p)(v) [S~~ vj J = lEIJJ PJ for v p
= p p~ & ~) (T~.

R and P satisfy the commutator [P;,RJ]=-i5;., where P—= Qp .
Together p„z„a„R,and P form a complete set in the same sense as r„,p„and s„;i.e., the

only operators which commute with all the former are operators which commute with all the latter,
and conversely.

In terms of p„,v„g„,R, and P, a Hermitean operator y may be defined:

Pff~ P+fL~ P 1 Pff ~ P7T ff g~ x7T~+ P
2 2MT' 2 2mpMT

' '
2mpMT

y is proportional to 4'" of Foldy" (H. c. denotes Hermitean conjugate).
To order (mass) ', the unitary transformation e'" relates the lowest-order (Galilean) position, mo-

mentum, and internal spin variables of particle v to the canonical variables r„p„ands,
r e'x(& +R)e-'x p e'x[77 +(I /Mz)P]e 'x s„=e'xa.e-'x

To order (mass) ', these are the variables given by Bakamjian and Thomas. " Together with the sub-
sidiary conditions, these expressions may serve to define p„v„,O„and R to order (mass)
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In the presence of electromagnetic fields, p„is replaced by the gauge-invariant momentum p„:—p„
-e,A(r„).Hence, P—= Qp& ——P-ge&A(r&), and i7, =p„—m, P/Mz —-7i„—e„A(r,)+m, ge&A(r&)/Mr. y be-
comes X=—y(f„,P), and the unitary transformation e'x of HF~ yields the desired EM-interaction
Hamiltonian

E M eixH E Me ix-~eix(se-ix/st)

where IR denotes infrarelativistic. To order (mass) ', H, R has the form

HIR HFw +H~Fvi ', Hgp~
' =-2Zep[E(rq) ~ a&+a& ~ E(r&)],

P iT„P 1 7„p'„1(p„xi7 ) xp o„xP o„xf„'o„xpa„=--2P ~ "+ +- +hc — ' + " "+Ir ~ v 2M' 2 2m~M T 2 2M T 2mvtI/IT 2mpM p 2M z-

It has been assumed that p, „~1/m,.
It should be noted that H&R™could equivalently be obtained by the procedure of Psborn'; namely,

the replacement of r„byr„+a,in HF~ (NR denotes nonrelativistic), which is then expressed in
terms of r„with -V„y(r„)being replaced by E(r„).a, is given above, and r, "=—p, +R.

IJz„»' represents the "correction" terms to the FW reduction. We remark that for two particles
the "correction" terms do not reduce simply to the extra terms retained previously by Osborn' and by
Brodsky and Primack, "but include their terms plus terms needed to describe the role of internal or-
bital motion of the system. Even in the case where both particles are spin zero, the "correction"
terms are not zero, and they are necessary in order to maintain consistency with the LET and the
DHG sum rule.

The low energy theorem and DHG sum rule. —The scattering amplitude for Compton scattering can
be determined from general principles and, to first order in photon frequency, it depends only on the
mass, charge, magnetic moment, and spin of the target. ' ' Our calculations are patterned after the
procedure used by Barton~ and Osborn, and only special points of interest will be noted here.

It is explicitly assumed that an energy gap exists between the ground state and any excited state,
that the only degeneracy of the ground state is the usual multiplet structure associated with rotational
invariance, and that the initial momentum of the composite system is zero.

To first order in photon frequency, IJ« ' does not contribute to the scattering amplitude. Those
terms which do contribute either are or can be reduced by the use of closure to matrix elements of
operators between states belonging to the ground-state multiplet. Since the internal variables are
irreducible vector operators under rotations generated by S, the Wigner-Eckart theorem may be ap-
plied together with time-reversal invariance to remove many of these terms until finally only matrix
elements of T„-=p„x~„ando„require evaluation. The relationship of these to the magnetic moment
of the system is secured by defining the following reduced matrix-element ratios:

i (nSIIE,llnS), (nSllo, II nS)
(nSIISII aS)' ' ' (nSII Sll nS) '

where S represents the spin of the system and a represents all other quantum numbers. All the struc-
ture of the composite system relevant to our calculation, i.e. , the orientation and coupling of spins
and orbital angular momentum, is now contained in 0, (n, S) and 0,'(n, S), and therein lies their power.
Through the Wigner-Eckart theorem the magnetic moment of the composite system (assuming no "ex-
change" currents) can be expressed in terms of 0, (n, S) and 0,"(n, S): With p. =P[g„T„g„'o„]and

g, and g, given earlier,

p =—gS = (nS, M = Sl p, I nS, M =8) =P [g „'Q„i+g„'0„']S.
It is in this manner that the magnetic moment of the composite system finally enters the Compton am-
plitude.

We emphasize that time-reversal invariance must be explicitly adjoined to gauge invariance and
Lorentz invariance to establish the theorem, as is to be expected; space-inversion invariance (as used
by Osborn and by Brodsky and Primack) is not required to derive the LET."

The verification of the DHG sum rule follows the approach and techniques of Barton and Dombey' and
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Osborn' as well as those indicated above for the LET. Once again IJ~ ~&
' must be used in its entirety

to take proper account of orbital-motion contributions, and time-reversal invariance, but not space-
inversion invariance, must be explicitly assumed to obtain consistency with the DHG sum rule.

It should be remarked that had Osborn' been uniform in applying his substitution principle, he would
have obtained the interaction corresponding to the two-particle form of our result, and had Brodsky
and Primack' retained first-order retardation effects which contribute to the description of orbital
motion, they too probably would have obtained the same two-particle interaction Hamiltonian.

Clearly, similar considerations must obtain, mutatis mutandis, for other interactions of loosely
bound systems and, in particular, for the weak-interaction Hamiltonian.
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