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an independent determination of the coupling con-
stant.

From the assembled astrophysical data it is
concluded, first, that the (ev, )(v,e) interaction
does exist in nature, and, second, that the value
of the coupling constant is equal to, or close to,
the coupling constant of beta decay, namely, g'

]O0& 2g 2

*Also at Physics Department, City College of New

York, New York, N. Y. 10031.
R. P. Feynman and M. Gell-Mann, Phys. Rev. 109,

193 (1958).
M. A. Huderman, Rept. Progr. Phys. 28, 411 (1965);

H. -Y. Chiu, Ann. Rev. Nucl. Sci. 16, 591 (1966).
J. B. Adams, M. A. Ruderman, and C. H. Woo, Phys.

Rev. 129, 1383 (1963).
4C.-W. Chin, H. -Y. Chiu, and R. Stothers, Ann. Phys.

39, 280 (1966).
5R. Stothers, Astron. J. 71, 943 (1966).
V. Weidemann, Ann. Hev. Astron. Astrophys. 6, 351

(1968).
O. J. Eggen, Astrophys. J. 157, 287 (1969).
O. J. Eggen and J. L. Greenstein, Astrophys. J. 141,

83 (1965).
~H. M. Van Horn, Astrophys. J. 151, 227 (1968),
C.-W. Chin and R. Stothers, to be published.

~ S. C. Vila, in Low-Luminosity Stars, edited by S. S,

Kumar (Gordon and Breach, New York, 1969), p. 351.
' S. C. Vila, Astrophys. J. 146, 437 (1966), and 149,

613 (1967), and private communication; M. P. Save-
doff, H. M. Van Horn, and S. C. Vila, Astrophys J.
155, 221 (1969}.

A. Sandage, Astrophys. J. 125, 422 (1957}.
L. G. Henyey, H. LeLevier, and B. D. Levee, Astro-

phys. J. 129, 2 (1959); B. Stromgren, in Stellar Evolu-
tion, edited by R. F. Stein and A. G. W. Cameron (Ple-
num, New York, 1966), p. 391; U. Lindoff, Arkiv As-
tron. 5, 1 (1968); B. P. Kraft, in Stellar Astronomy,
edited by H. -Y. Chiu, H. L. Warasila, and J. L. Remo
(Gordon and Breach, New York, 1969), Vol. 1, p. 317.

R. Stothers, Astrophys. J. 155, 935 (1969).
R. Stothers and C.-W. Chin, Astrophys. J. 158, 1039

(1969).
R. M. Humphreys, thesis, University of Michigan,

Ann Arbor, 1969 (unpublished), and private communi-
cation.

C. Hayashi, R. Hoshi, , and D. Sugimoto, Progr. The-
oret. Phys. (Kyoto} Suppl. No. 22, 1 (1962}.

R. Stothers, in Stel1.ar Astronomy, edited by H. -Y.
Chiu, R. L. Warasila, and J. L. Hemo (Gordon and
Breach, New York, 1969), Vol. 2, p. 205.

H. Stothers, Astrophys. Letters 4, 187 (1969).
R. Stothers, Astrophys. J. 138, 1085 (1963).
R. Stothers and H. -Y. Chiu, Astrophys. J. 135, 963

(1962); W. A. Fowler and F. Hoyle, Astrophys. J.
Suppl. 9, 201 (1964) ~

23F. Reines, private communication.

SIMPLE APPROACH TO UNITARIZATION IN HARD-MESON CALCULATIONS*
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The hard-pion effective-range formula for the pion form factor of Brehm, Golowich,
and Prasad is derived from unitarity and (vector) meson dominance assuming a real
tree form factor as input. The result is generalized and applied to the 7t-A~-p system.
The suitably continued finite p-width form factors are used to calculate the soft &+-&

mass difference when (a) both tree form factors are unsubtracted in broken chiral sym-
metry (~ = 5.7 MeV} and when (b) both tree form factors are subtracted (6 =-g) (6m
= 5.2 MeV).

In a recent Letter it was shown how the specific hard-pion current-algebra method of Ward identi-
ties could be used to generate an effective-range formula for the pion form factor directly without
reference to the vn phase shift. Thus, the usual ordering of input and output is curiously inverted,
since in this case the T= J'= 1 mv phase shift 5» is among the output, once the pion form factor F(t)
is given. Unfortunately, the derivation leading to an "on-shell dynamical equation for F(t)" presented
in Ref. 1 largely obscures what is demonstrably an attractively simple approach to unitarization in
hard-meson calculations. In our derivation it will not be necessary to tie the unitarization to any par-
ticular current-algebra procedure which produces hard-meson results. As shown below it is enough
merely to require that the input hard-meson vertex, say'

r(t) = (m, '-t)F(t),

which we shall occasionally refer to as the "tree vertex, " be real. The unitarization of "tree form
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factors" may then be readily extended to include Veneziano-type form factors~ with the corresponding
output of low-energy phase shifts. '

The transformation of the familiar elastic unitarity relation,

Abs(olv„~" (o)I~'(p)~-(q) in) =Abs~(t)(-p+q)„= .'-J-(ol v„"~(o)l~'(p')~ (q') in)
drd@2 W(2~)'C(p)

&(lv'+(p+q)')( (p') (q') I&"""'+(o)l '(p)), (2)

x[(- +,')&olv, '"(0)l~i'(P)iT (q) o«&]„.„

the starting point in our derivation, into a dynamical equation for E(t) (the essential result of Ref. 1)
requires the following successive approximations: (1) One keeps only the one-particle reducible part
of the full amplitude' (7t'(p')n (q') inly~'"' ~2(0)liT'(p)); this is consistent with our earlier assump-
tion that I' is real. (2) The structure of the one-particle reducible amplitude is further simplified
through the assumption of meson dominance. This means vector (p) dominance in the present instance,
but scalar (e) dominance in, say, the calculation of the T= J'=0 niT phase shift. 8 Thus one finds~

(m'(p')v (q') in IZ" "' '(0)lii (q)) =-(v'(p')~ (q') in IV, '"(0) lo)g,

[(~,'-t )&ol V. '"(o)
I

'(P) (q) out&] „,=f (t)(-P 'q). ;

4+5f (t) = m ' 1-
4 m'

P

is the linear polynomial given by hard-pion current algebra. The one-parameter solution of Eq. (4)
has been treated adequately in Ref. 1"and is assumed in our application below. Our procedure is
easily extended to several coupled two-pseudoscalar meson channels, in which case the matrix ver-
sion of Eq. (4),

Abs S'(t)=, ,—Tr[E'(t)p(t)Z(t)]f (t),
].

12m F„nq,

should be used. Thus one might consider treating approximately the effect of the opening of the KJ7
channel on the high-t wing of the pion electromagnetic form factor, although we shall not do so here.
Instead, we confine ourselves in the remainder of this note to some considerations relating to the
effects of a finite p width on the matrix element (olv„~"(0)ln'(p)A, (q) in). Since the form factors
L(t), M(t), N(t) in this case, defined by

(8)

&ol v„~"(o) l~'(p)~, -(q) in&

(OIV„"(0)I~'(P)&, (q) in) = [L(t)~»+M(t)(-P+q)„P. +N(t)(p+q)„p. ]i~, ' "(q),
are related to those of (A, '(q)lv„~" (0) lir'(P)) by crossing, we are enabled by analytic continuation to
compute the effects of the finite p width on the ~'-p' mass difference for either unsubtracted or sub-
tracted form factors. (The latter case has not been properly discussed in the literature for reasons
of convergence. ")

As in our earlier derivation we replace the customary p-dominance argument, which leads to

=i J d'xe'~ 9(—xo)g~ f(olv„"(0)lpo(k), A)dkf[2E(k)(2vr)']] '(p (k), A IJ" " (v)IA (q))

by "P-wave ~7t dominance, " with'

[Abs L(t)—Abs M(t)(q, '-p, ')—Abs N(t)(q, +p, )']&,' ''(q) =0, (lo)
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AbsL(t)~, ( i](q)—AbsM(t)(q —p);(q +p )e ' i](q)

3t
AbsL(t) =I&(t)l'

t 6 .&(t),
P

where l(t) = [(m~'-t)L(t)j„„ is the linear polynomial (in t) given by current algebra. " The solution of
Eq. (12) is"

(12)

3

, ((-t+m, ')L(t)~ "&'(q) -(-t+m, ')M(t)(q-p);(q. +p. )&.""(q))„.,vt 6mgp

For an estimate of the effects of a finite p width on the ~'-~' mass-difference calculation for soft ex-
ternal pions, only L(t) is needed. '~ L(t) satisfies the dynamical equation

(13)

In the soft-external. -pion limit, the ~'-~' mass difference is given by"
4 2

m, +—m„= —Be*m, (2w) 'Re(i, [i'(-q*)]'+. . . [i-(-q*)]'( (14)

when only contributions from the one-pion and one-A. , meson intermediate states are kept. The soft-
pion electromagnetic mass-difference calculation of Brown and Munczek" seems to us the aptly suited
"narrow p-width" calculation with which to compare our finite-width approximation, i.e. , Eqs. (13) and
(14) with E(—q2), the continued "solution" of Eq. (4). It is easy to show that the soft-pion calculation of
Ref. 17 which neglects the anomalous moment of the A., for convergence requires both form factors to
be unsubtracted:

F (—q') = m p'/(m p'+ q'),

L(-q') = g,G,~, /(m-, '+q');
(15)

the result of "broken chiral symmetry"" which follows when the mass parameter mo of Ref. 17 is set
equal to m~ is equivalently obtained by requiring that the form factor L(—q ) satisfy the current-alge-
bra limit, "L(m~') =@~/F„, so that G~~„=m~' and hence g~G~&„=W2m~'. Our finite-width analog of
this model,

4 2 2

m„,-m, = —12e'm (2w) ReIi, [F( q';ll= —1)] (-'—
+my

(17)

yields m, +-m„o = 5.7 MeV as compared with the (narrow-width) broken-chiral-symmetry result" m„+
-rn, o = 5.1 MeV. On the other hand, in the favored case, ' 6 = —~, where both the corresponding narrow-
width form factors are subtracted, we find m, +—rn, o = 5.2 MeV.

We should like to thank G. C. Joshi, K. Kang, A. Pagnamenta, and D. Harrington for discussions; we
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In the case of ~-wave, equal-mass (m„) scattering in one channel, one has familiarly

T = K(t) Pf 2-t) ~I'(t) + U(t),



VOLUME 24, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARcH 1970

with

Abs r(t) = r*(t)[(4t-m )ii /(2+t)]U(t), t -4m

and

IJ(t) =6I/X),

with K the form factor corresponding to the vertex I . (In the one-particle irreducible amplitude U above, the num-
erator function X has only the unphysical cut. ) Thus our neglect of the amplitude U is consistent with a real I';
moreover our approximate T lacks a left-hand cut.

In principle, the procedure couM also be extended to the case where there are several particles in the same
channel, e.g. , p and p'.

There we take g //mp =2+~, with E„=94MeU.
However, note that if one tries to "simplify" the solution of the dynamical equation (4) by introducing the fac-

tored function, G(t) =E(t)f(t), satisfying

Abs ~(t) = t~(t) I'~. ..
p

then we are compelled to introduce a Castillejo-Dalitz-Dyson pole at t =4m& /(1+6) in G [G(t) is Herglotz while
E(t) is not) to remove the singularity arising from the vanishing of the linear polynomial f(t). Thus, in this case,

f(t) m
p

~ „4~ 2 12zE„mp2 t' i2(t' t) f(t-)

which can be reduced to the one-parameter solution for I"(t) given in Ref. 1.
nEor example, Tanaka [K. Tanaka, International Centre for Theoretical Physics, Trieste, Report No. IC/68/81,

1968 (to be published)] notes that "there is no justification for dropping the quadratically divergent terms" that
arise in the narrow-width calculation in this case.
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t41n the hard-pion current algebra where f(t) is given by Eq. (6),

t(t) =g gg + (t-m )(gp/m p )[gyp (n:.g -m -)2hgp j,

with

2E
1

2 2 m 2 and hgp„—2

[See, for example, S. G. Brown and G. B. West, Phys. Rev. 168, 1605 (1968).] Their constants are related to
ours by f&=g&, f„=v 2E~.

5The subtraction term 2E~ m&2E(to)l(to)/f(t) removes the pole at to ——4m&2/(I+6) introduced by the zero of f(t).
Note that E(tp) is real.

i6The analytic continuation of I'(S) to negative t is readily obtained once the essential function

2 Q3 A+2Q
g(t) =——-ln — — t -4m

z-v9 2m v9 '

is expressed as the integral,

Q2 Qi
g( ) =—— dI, ",3~2

Thus

2 (4t +m )
2 gt +2('t+m )ii'2

g(-t) = ——, lnv't 2m'
t &0.

L. M. Brown and H. Munczek, Phys. Rev. Letters 20, 680 (1968).
i8That is,

lim (Ai (p) IV&( ) {0)I& (0)) i( ~g/ )E=&*et{(p)= lim jL{t)6»i@~*{&)(p) + }.k~0


