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quencies, a correction must be introduced to obtain a
spectrum proportional to the number of nuclei at a
given frequency. We have determined that, for our
method of measurement, the ratio of the echo ampli-
tude and the frequency is the appropriate quantity to be
used in the analysis of spectra. Our conclusion is
based on results obtained for the relative intensities of
the two separated Fe resonances in Fe;Si [T. J. Burch,
thesis, Fordham University, 1968 (unpublished)] and
the relative intensities of the two Ru-isotope resonanc-

es in Ni-rich Ni:Ru alloys (J. J. Murphy, unpublished).
We have made no frequency correction to the data re-
ported here since the error introduced is only a few
percent over the frequency range in question and would
not affect our conclusions.
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Starting from the kinetic equations obeyed by the time-dependent spin-correlation func-
tions, we have calculated the homogeneous function which appears in the dynamical scal-
ing expression for the linewidth of critical fluctuations in ferromagnets and antiferro-
magnets. In agreement with recent experimental findings, this function shows a mini-
mum for k/q =inverse correlation length/wave number # 0.

A series of recent experiments!™* on magnetic
substances has provided a remarkable confirma-
tion of the dynamical scaling assumptions (DSA)
of Halperin and Hohenberg.>® Moreover, DSA
have also received strong theoretical support
from the work of Kadanoff and Swift,” Kawasaki,®
and Mori.?

Nevertheless the only formulation leading to a
fully microscopic understanding of DSA is based
on the kinetic equations obtained independently by
De Leener and one of the authors (P.R.)1%1! (Ref.
11 is hereafter referred to as RDL IV) and by
Kawasaki.'>!* Unfortunately, these equations
have only been justified in the Weiss limit, where
the number of neighbors is taken large (see Ref.
10).

Although the Weiss condition is a severe limi-
tation (it is known at equilibrium to lead to er-
roneous critical indices), the simplest dimen-
sional predictions of this kinetic theory are well
verified.

For example, let us consider the spectral func-
tion for the spin autocorrelation function, I q(w)
(¢ is wave number, w is frequency), and let us
denote by w,(g) and w,”(g), respectively, the line-
widths of this function at T, for ferromagnets
(g=0) and antiferromagnets (g=~7, where 7 is the
vector characterizing the staggered magnetiza-
tion); one finds

wo(q)x ¢*'%,  w,T(q)c(q-1)%2=g*/2, 1)

These results are in remarkable agreement with
experiments.
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1t is thus very tempting to explore further the
consequences of this kinetic theory which, in
principle, allows us to go beyond DSA. For in-
stance, DSA predicts that, at a temperature T
# T, (characterized by a correlation length « ™),
the following results replace Eqgs. (1):

w,(q) = wy(q)f (k/q),
w,7 (@)= w,"(Q)f " (k/q%), ()

where f and 7 are homogeneous functions of «/
q; they are unknown except for their asymptotic
behavior:

f&x)~1, f7(x)=1, when x-0;
flx)ocx? fT(x) xx*2 when x-oo, (3)

On the contrary, kinetic theory allows us to com-
pute f and f7 explicitly for all values of x. We
have performed such a calculation which we now
summarize briefly,

The starting point is the kinetic equation obeyed
by the time-dependent spin-correlation function
T, () [normalized in such a way that I, (t=0)=1]:
It reads [see RDL IV, Eq. (I.5)]

9, fq(t) = fof G‘q('rl fq,)fq(t -7)dt, @)

where the non-Markoffian kernel éq is a function-
al of I';y and can be expanded according to rules
given in RDL IV:

Cq(TI fq,)= @q(z)('r|fq,)+ Gq(“)(ﬂ fq,)+ <+ (5)

The explicit form of G,® is given in RDL IV,
Eq. (3.1). In a ferromagnet close to T, it re-
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duces to Eq. (3.7) of the same reference, which we repeat here for convenience:
~ ~ L @G +3.)2%2=0.2] ~ ~
Gq(z) (1| ) = —2(¢? + ) dqll (Q(K2q+;)qlz._1_1;1 T (T)rql(T), T-T. q-0. (6)

Here vy is a constant, irrelevant for our present purpose.
In order to get a semiquantitative idea of the linewidth w,(q) associated with I“q, we first assume
that w, ~'(¢g) can be measured by the zero-frequency Fourier component of fq(t) 14,

w (@)= [ ["To0at]™ = ["CoTat ~ |

Moreover, in the right-hand side of (7), we insert fq,, as calculated from the Markoffian approxima-
tion to (4), namely

8, T,(0)=[ [

Although our previous investigations have shown that this simplification does not lead to the correct
shape of the spectral function, we can repeat the argument given in RDL IV to suggest that this “ze-
roth-order” approximation leads to semiquantitatively correct results. Inserting (6)-(8) into (2), we
get immediately, with f(x)=7(x)/7(0),

Flx)=27(1+ xz)[ody f:llda P21 +20y)(x®+y?) "t

x [(A+2+2ay)*4f (x/(1+y2+2ay)?) +y52f (x/y)] 7% (9)
We have solved Eq. (9) numerically by itera-

00 ~

G, P (7T, )dt. (7

© ~

G,® (r[T,)at] T, ). (8)

tion; the result is shown in Fig. 1(a). ’ in Fig. 1(b).

The same calculation has been repeated for The remarkable feature of the curves giving
antiferromagnets. The only difference is that we f(x) and f"(x) is a minimum for x#0. This non-
now have to consider simultaneously the critical trivial result is confirmed by the experiments of
behavior close to ¢=0 and to ¢g=7. This point is Nathans, Menzinger, and Pickart' on RbMnF,
discussed in detail in Ref. 13 and will not be con- and by the more precise findings of Lau et al.* on
sidered again here. We obtain then, instead of the same substance.

(9), a set of coupled integral equations f9°(x) As is seen in Fig. 1(b), these latter experi-
and " (x). The solution of this system is shown ments semiquantitatively agree with the present

theory, except for large x. In this region, how-
ever, resolution effects (which were not correct-

20} S(x) ed in this particular case) may be large because
the corresponding g* value is small (¢g*=~0.025
151 A=) and it is hard to decide whether the discrep-
ancy indicates a failure of the theory or an ex-
0 perimental difficulty,'®
We should also point out the deeper and more
o extended minimum in the ferromagnetic case. It

would be interesting to have an experimental con-
firmation of this prediction, although it is diffi-
cult to work with a Heisenberg ferromagnet and
we do not know if the results of the present theory
can be extended to metals.

Finally, let us stress that the calculation pre-
sented here involves no adjustable parameter,
Nevertheless, the agreement between theory and
experiment depends on the fact that we have chos-
en k as an independent variable. If we had taken
instead the variable (7-T_), we would have found

0sL

FIG. 1. Temperature dependence of the linewidth.

(a) The solution f(x) of Eq. (9) for ferromagnets. (b) The o . ) R
function f7 () for antiferromagnets: theory (plain the well-known difficulty that, in the Weiss limit,

. _ 1 . . e g
curve), experimental results for RbMnF; (crosses), K G:(T-TC)U with 1./-'2 while, in realistic system,
best fit of these experimental data (Ref. 4) (dashed line).  one has y=2, This is a further indication in fa-
Notice the change of scale from (a) to (b). vor of the argument presented in RDL IV, ac-
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cording to which the Weiss limit might well play
an important role only in the determination of
the equilibrium properties of spin systems, and
not in their dynamical behavior.

We thank Dr. H. Y. Lau et al. for sending us
their work prior to publication.
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“From the sum rule f:I‘q(w)dw =m/2 for the spectral
function I'y ), we expect of course that I'y (0) =[5 0
xdt gives an estimate of the linewidth, although, strict-
ly speaking, this latter is of course shape dependent.

5 After this note was submitted for publication, D. Hub-
er and D. Krieger reported a similar calculation in
Phys. Rev. Letters 24, 111 (1970), where a plot is giv-
en of w, (g)/w,(0) against (3/x)%. Their method is how-
ever developed mainly for ¢/ <<1 (because of a cutoff
at kp, ~5«). Moreover, for comparison with the experi-
ments of Lau et al., they need the experimental value
of w,(0) which is possibly subject to important resolu-
tion effects. Our solution, given in Fig. 1 (and obtained
with no cutoff) is probably best in the nonhydrodynami-
cal region ¢q/k > 1, where most experimental results
were reported (see Fig. 1) and exhibits the observable
nontrivial minimum at g/k= 0.5 which cannot be seen
in the above-mentioned work; otherwise the two results
agree semiquantitatively. We thank P. C. Hohenberg
for pointing out this work to us.
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Fully variational unrestricted Hartree-Fock calculations for the (MnFG)“’ cluster are
reported. Charge and spin densities are analyzed and shown to result in a neutron mag-
netic form factor which is contracted relative to the free-ion value in agreement with
experiment but contrary to predictions of simple covalent-bonding theory.

Covalency or electron-transfer effects have
been identified by NMR and neutron magnetic
scattering experiments as playing an important,
indeed vital, role in understanding the observed
magnetic and optical properties of transition-
metal compounds. An unresolved question is the
apparent failure of covalent theory to explain the
measured neutron magnetic scattering from Mn2*
ions in magnetic salts. These experiments show
relatively little loss of intensity at low scattering
angles! and a form factor which lies well below
the free Mn?* ion value [or an expanded spin den-
sity relative to the free-ion Hartree-Fock (H-F)
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result]. By contrast, Ni** shows a large reduc-
tion in absolute intensity in the forward direction
and a neutron magnetic form factor which lies
above the free-ion value? (or a contracted spin
density). Hubbard and Marshall® have shown,
using a simple linear combination of atomic orbit-
als (LCAO) model, that bonding effects will raise
the form factor above the free-ion value and re-
sult in a loss of intensity at low scattering angles,
consistent with the Ni** results. Since core polar-
ization® and unquenched orbital angular momen-
tum® contributions also raise the measured form
factor, the observation that the spin density in



