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The liquid-droplet model is used to derive a formula relating the exponent 5 and the
compressibility factor P~/ksT p~ at the critical point of a fluid. For fluids (the van
der Waals continuum, the Bragg-Williams lattice gas, and Ising lattice gases) where
both these quantities are known, the proposed relation is in agreement with experiment
and theoretical prediction. Therefore, in other cases this relation may be used to pre-
dict 6 from the known I'~, &~, and p~. On this basis we predict a 6 between 4.2 and 4.5
for nonpolar molecules, about 5 for hydrocarbons, and larger than 5 for polar mole-
cule s.

Three basic assumptions were used in Fisher's
liquid-droplet model' in order to formulate the
cluster theory in mathematical form: (1) It is a
classical model. (2) The excluded-volume effect
between droplets is neglected. (3) The most
probable surface area S of a cluster of size l

will vary as

S(l) =a,l' (l - ~)

with, necessarily for d ~ 2, 0 & 0 & 1, where a,
=a, (T). With these assumptions, the pressure
and density of an infinite system for the liquid-
droplet model can be expressed as

=g, gl 'x' y',
B 1=y

the critical point x= 1, and y =1, and hence

=g. EI '=g. t(T),
B C I=I

p, =go Ql' ' =go&(~-1),
1 =y

where f(x) is the zeta function of x. Therefore
the compressibility factor at the critical point
can be written as

P, /k, T.p, = g(~)/p(T-I).

Also, from Fisher's analysis, ' the critical expo-
nent 5, which describes the behavior of the criti-
cal isotherm as ~P-I',

~

—~p-p~(, at T =T„can
be expressed in terms of & as

p=g, gf' 'x"y',
1=a

6 =1/(7 —2), (7)

where

x = exp[-a, (w-(uT)/k, T 1,

y =z expIE, /k~T +S,/kB],

(3a)

(sb)

and kB ——Boltzmann constant, m = surface energy
arising through loss of binding energy by parti-
cles near the surface of the cluster, ~ = corre-
sponding entropy per unit of cluster surface, z
= fugacity, E, =bulk energy per particle in the
cluster, S, =bulk entropy per particle in the clus-
ter, and go is a constant. Here T, 2 & 7&2.5,' is
a parameter due to the "close" effect on the sur-
face of the clusters near the critical point. ' At

From Eci. (6) it appears that the compressibility
factor at the critical point is simply a function of
T only. Therefore, by the known I'„T, and p„
with Eqs. (6) and (7), we are able to calculate the
value of T, as well as the critical exponent 6, or
for given 6, we can predict the compressibility
factor at the critical point. On this basis, we
have investigated the 0 for fluids with given com-
pressibility factors at the critical point, and the
compressibility factor at the critical point for
the van der Waals continuum, Bragg-Williams
lattice gases and Ising lattice gases from the
known 5 values.

From the experimental point of view, it is eas-
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Table I. Calculated data for the critical exponent 4.

Molecule
Compressibility

factor'

Simple, almost spherical, nonpolar molecules

He4
He3

H2

Ne
Ar
Xe
N2

02
CH4

CO2

0.305
0.303 78
0.302
0.296
0.291
0.290
0.292
0.292
0.290
0.287

2.237
2.235
2.234
2.228
2.223
2.222
2.224
2.224
2.222
2.219

4.218
4.240
4.272
4.383
4.479
4.499
4.460
4.460
4.499
4.558

ier to determine the critical pressure I', criti-
cal temperature T, and critical density p, and
hence the compressibility factor at the critical
point, than the critical exponent 5. With this in
mind, we have chosen the known compressibility
factor at the critical point to predict the 5 value
for fluids. Three classes of substances, which
include simple almost spherical nonpolar mole-
cules, most ellipsoidal hydrocarbons, and polar
gases are investigated. ' For the simple almost
spherical nonpolar molecules, 6 varies from 4.2

to 4. 5. As for the hydrocarbons, we have exam-
ined 17 different substances which are ethane,
propane, isobutane, n-butane, isopentane, n-

Table II. Available experimental analysis of the criti-
cal exponent 6.

Gases Ref.

pentane, n-hexane, n-heptane, . n-octane, ben-
zene, cyclohexane, diisopropyl, diisobutyl, ethyl-
ene, propylene, and acetylene. The value of 5
for this group is approximately equal to 5.0, ex-
cept for ethylene and n-butane which have the
value of 6 4.48 and 5.3, respectively. There are
large deviations for the class of polar gases.
Among them we have examined CH, CH, H,O,
CH, OH, CH, C1, and C,H, CL The calculated val-
ue of 6 ranges from 4.9 to 7.9; however, except
for C,H, C1, all of them are larger than 5.0 (see
Table I). Compare these calculated 5 values with
the available results obtained by experimental
analysis for some nonpolar almost spherical gas-
es (Table II). The proposed relation is in excel-
lent agreement with experiment. Therefore, we
have predicted that the 6 value is about 5.0 for
hydrocarbons and larger than 5.0 for polar mole-
cules. Both of these quantities are exactly known
for the van der Waals continuum and the Bragg-
Williams lattice gas. Therefore, we can use
either quantity as our input data. Here we use 5
= 3, and the corresponding compressibility factor
at the critical point calculated by the proposed
relation is 0.392, which is very close to the val-

Ethane
Propane
Is obutane
n-Butane
Is opentane
n-Pentane
n-Heptane
n-Octane
Benzene
Cyclohexane
Diis opropyl
Diis obutyl
Ethyl ether
Propylene
Acetylene

CH3CH
H20
NH3

CH3OH
CHgC1

C2H5C1

Hydrocarbons

0.267
0.270
0.276
0.257
0.268
0.266
0.258
0.258
0.265
0.276
0.266
0.262
0.262
0.273
0.275

Polar molecules

0.181
0.224
0.238
0.220
0.258
0.269

2.200
2.203
2.209
2.191
2.201
2.199
2.192
2.192
2.198
2.209
2.199
2.196
2.196
2.206
2.208

2.126
2.162
2.174
2.158
2.192
2.202

'Hirschfelder, Curtiss, and Band, Ref. 4.

5.000
4.921
4.788
5.308
4.967
5.013
5.206
5.206
5.037
4.788
5.013
5.107
5.107
4.854
4.810

7.926
6.177
5.744
6.311
5.206
4 944

CO2

Xe

H2
He4

4.6+0.06
4.0'

4.6+0.1
4.2'
4.2'

4.45 + 0.10

a
b, c

b, d

b, e
a
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Larson and Sengers suggested that in the critical
region the P-p isotherms may in fact be much flatter
than has been inferred from PVT' work because of in-
herent limitations in the method. [S. Y. Larson and
J. M. H. Levelt Sengers, in Symposium on Thermo-
physical Properties. Papers. Third, 1965, edited by
S. Gratch (American Society of Mechanical Engineers,
New York, 1965), p. 74.] Therefore the values of 5
are expected to be larger than the values given.
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Table III. Comparison of compressibility factor at the critical point predicted by the proposed relation with re-
sults obtained by other theoretical models.

P, lkBT, p„
(model)

P~/kgT~p~
(prediction)

van der Waals

Brag g-Williams
Square lattice
Triangular lattice
Simple cubic

lattice
Fcc lattice

3
3

]5R

]5R

5.20+ 0.15'

5.20 + 0.15

0.375
0.3863
0.0986
0.1112b
0.246

0.258

0.392
0.392
0.1018
0.1018

0.258 + 0.006

0.258 + 0.006

'Fisher, Ref. 5.
S. Y. Larson and J. M. H. Levelt Sengers, in Symposium on Thermophysical Properties. Papers. Third, 1965,

edited by S. Gratch (American Society of Mechanical Engineers, New York, 1965), p. 74.]

ues obtained by the theoretical models (see Ta-
ble III). For Ising lattice gases, we have checked
square and triangular lattices in two dimensions,
and simple cubic and fcc lattices in three dimen-
sions. In three-dimensional Ising lattice gases,
the value of 6 is suggested as 5.20+ 0.15,' which
will give the compressibility factor at the criti-
cal point, from the proposed relation, as 0.252-
0.2645. When one compares this with the re-
sults estimated for the Ising lattice gases them-
selves, e the agreement is reasonable (see Table
III). In two-dimensional Ising lattice gases, it is
generally believed that the 5 value is exactly
equal to 15 for a variety of lattices. ' From our
calculation, the corresponding compressibility
factor at the critical point is 0.1018. Compari-
son with the data listed in Table III shows that we
have less than 10 and 5% deviations for triangu-
lar lattice and square lattice, respectively.

Here, we would like to call attention to a rnat-
ter which concerns the liquid-droplet model for
describing critical phenomena. In order to get
the value of T of interest, for fixed compressibil-
ity factor at the critical point, large l is needed
for the zeta-function sums in Eq. (6). For in-
stance, the compressibility factor at the critical
point for He' is 0.305; if we take the sum only to
l = 10, the corresponding value of T will only be
1.0678; if to l = 100, the corresponding T is
1.978; and for i=1000, the corresponding 7 is
2.140. All these corresponding pair numbers
will give the compressibility factor at the criti-
cal point 0.305; however, the value of 7, and
hence 6, will not be significant unless we take l
as large as possible. This in turn means the
terms needed for large l are playing an impor-
tant role near the critical point, which is in

agreement with the original assumption of the
liquid-droplet model. However, in order to get
the value of the compressibility factor at the
critical point of interest, for fixed 0, the l =1
term gives a significant contribution in the zeta
function sums in Eq. (I), Eq. (2), and conse-
quently also in Eq. (6). Let us take the case for
6=4.92 (7. =2.203); then the ratio in Eq. (6) turns
out to be 0.108, rather than 0.27, by not includ-
ing the l = 1 term, and is 0.195 for half-contribu-
tion of the l =1 term. This means that the clus-
ter which only contains a single molecule is also
playing an important role near the critical point,
which is not assumed in the original model.
Therefore, the droplet model, in our calculation,
has been extended far beyond the region where
physical intuition provides some justification.
However, with our examination both theoretically
and experimentally, the model-dependent pro-
posed relation strongly suggests that there is a
connection between the critical exponent 6 and
the compressibility factor at the critical point.
The extremely sensitive relation between these
two measurable quantities, which we have exam-
ined in various ranges, also indicates that our
results are not merely a numerical accident. At
the same time, within the model, the structure
dependence of the 7 value, ' which is generally be-
lieved as a parameter only dependent on dimen-
sionality, '

may also throw some light on the sig-
nificance of the critical exponents.

It will be interesting to have some experirnen-
tal measurements of the critical exponent 5 for
some substances in the class of hydrocarbons
and polar gases to confirm or demonstrate the
inadequacies of the proposed formula.
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(7), 2 «& 2.5 instead of 2 & v & 3.
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calculate the value of T with corresponding compressi-
bility factor. We are able to get the accuracy of 7 to
10-6.
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between 2 and 2.5 for the critical region; this means
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A comparison between He II when the normal fluid is clamped and the superconduct-
ing state of metals leads to an extension of the two-fluid equations of London. The fol-
lowing consequences are discussed: (a) A nonstationary thermal emf (thermal electric
effect) can exist in a superconductor, (b) a stationary potential difference (not an emf)
can exist.

It is commonly accepted that there can be no
thermoelectric effects in superconductors. This
is based on the early experiments of Casimir and
Rademakers on the Seebeck effect and of Daunt
and Mendelssohn on the Thomson heat which show
that in the usual stationary-state arrangement
these effects vanish in the superconducting state. '
Balazs' has in addition tried to show that in the
macroscopic theory of London there is no room
for any thermoelectric currents. In this Letter
we will show that an extension of the two-fluid
interpretation of the London theory leads to ther-
moelectrie effects in nonstationary situations
which are perhaps observable.

The motivation for the extension of the two-
fluid model for superconductors comes from the
comparison of superconductors with the super-
fluid state of helium (He II). It is well known
that they have many similar properties (e.g. , per-
sistent currents), but it is perhaps not sufficient-
ly realized that there is the following major dif-

ference. In He II both the normal and the super-
fluid components are in first approximation able
to flow reversibly (that is, without dissipation)
but in a superconductor the normal electrons are
in first approximation clamped by the lattice. '
Any flow of normal electrons involves dissipa-
tion. It seems therefore much better to compare
the behavior of a superconductor with that of He
II when the normal fluid is clamped (normal flu-
id velocity v, =0) such as is experimentally re-
alized in a superleak. This suggests that one has
only one dynamical equation, namely for the su-
perfluid component. For the superconductor this
becomes in first approximation

D.v, - e t'-' = —Vp+ —IE+—v XB
Dt rn( e

which differs only by the Vp term (p= chemical
potential per gram) from the equation London
proposed (v is the superfluid velocity). ' This
still leads for the analog of irrotational flow to
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