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The method of optimized valence configurations has been extended to include split-
shell correlation and applied to the molecule F~. It is found (i) that consideration of the
correlation of only the so-called valence electrons is sufficient to yield an accurate de-
scription of the chemical bond; (ii) that in accordance with the basic assumption of the
method there exists a distinct separation in behavior between optimal configurations that
represent the extra correlation resulting from molecular bonding and those that will or-
dinarily be associated with the correlation in separated atoms; and (iii) that the number
of significant configurations of the first kind is small and readily obtainable by a se-
quence of limited multiconfiguration self-consistent field computations, followed by a
single configuration interaction involving all new orbitals thus obtained, while those of
the latter kind are indeed numerous but are easily accounted for by a suitable perturba-
tion technique.

The method of optimized-valence configura-
tions (OVC)' ' has by now been applied to several
molecules. The method, which consists in opti-
mizing through the multieonfigurational self- con-
sistent field technique (MCSCF) the configura-
tions that go to improve the description of the in-
teraction of the valence shells with each other,
has been found successful as a scheme for achiev-
ing a quantitative description of the chemical
bond in diatomic molecules. The success can be
attributed mostly to the fact that, unlike the usu-
al configuration-interaction (CI) process, the
number of meaningful configurations herein is
small and provides one with a smooth transition
from the Hartree- Fock method.

The reason why the number of significant con-
figurations is small is twofold. The first relates
to the natural-spin-orbital nature of the orbitals
resulting from the OVC process. The second and
more vital reason is that the correlation in atoms,
although large compared with the bond energy,
changes little during the molecular formation.
In general the correlation between the "core"
electrons changes so little as the molecule "forms"
that it can be completely neglected, while the in-
tershell correlation between the valence and core
electrons can at least be neglected to the first ap-
proximation. Thus while it is true that a large,
almost unmanageable number of configurations
is required for a proper representation of the
atomic correlation, the correlation that is truly
molecular (namely strongly dependent upon the
internuclear separation) is adequately represent-
ed by only a few. This observation, although not
contradicting the recent work of Davidson and
Bender' on the first-row hydrides, must be
weighed against their pessimistic conclusions re-

garding the many-configuration approach to mo-
lecular systems.

In what follows, we briefly outline the new and
simplified computational scheme by which we
take into account the contribution of the different
excitations to the total wave function. Our pro-
cedure involves the following steps:

(I) A basis set of functions is chosen by ade-
quately augmenting the one used for the Roothaan-
Hartree-Fock (RHF) wave function. The number
of additional functions required is usually small. '

(2) The RHF orbitals are obtained by solving
the usual self-consistant field equations.

(3) The configurations that are necessary to in-
sure that the molecule dissociates formally into
Hartree-Fock atoms in their appropriate states
are optimally mixed and all orbitals optimized
for various internuclear distances using MCSCF
techniques.

(4) In addition to the obvious configurations of
step (3) there are configurations whose contribu-
tions are small at large internuclear separation
but increase sharply as the separation decreases.
These are constructed and optimized along with
the configurations of step (3). Owing to the terms
representing their coupling with each other being
small compared with those representing their
coupling with the configurations from step (3),
we have found it a sufficiently accurate proce-
dure to optimize them one by one in the pres-
ence of the latter configurations, instead of doing
a full-blown MCSCF with all the configurations
simultaneously present, which is an expensive
and pathologically convergent process when the
total number of necessary configurations is large.

(5) The remaining configurations, whose con-
tributions are mainly atomic and vary slowly
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with internuclear distance or are too small for
inclusion in step (4), are then obtained using a
perturbation treatment.

We report below the application of the above
method to the molecule F,. In doing so we pre-
sent further clarifications and details of the dif-
ferent steps of the method outlined above. We
must emphasize, however, that the theory is ap-
plicable to any general diatomic molecule, F,
serving as a good illustration of the different as-
pects of the method.

We omit details for steps (1) through (3) which
have been discussed elsewhere. ' " These lead
to the optimized-double-configuration (ODC)
function

(core)1m„'lv '[a(3v&')+b(3v„')], (1)

where a, 5 are mixing coefficients and

(core) —= 1vg'1v, '2vg'2v„'.

In step (4) we add the following configurations
which represent "split-shell" correlation be-
tween the 0' and»hells as well as intrashell
correlation in the m shell:

(core)17k U 17fg 3vg3v~2&g( ZIJ x +U ),

(core) lv, '1m&'3v&3v, 2v, ('Z, ' x 'Z„'),

(core) 1v, '1m&'3v&'3v, '('Z&'),

(core)1~, 'le&'3v&'3v, '('Z&').

The symbols within brackets refer to the coupling
scheme of the open shells. The other coupling
scheme 'Z+ x'Z' for the first two configurations
in (3) contributes very little. Instead of doing a.

complete MCSCF with the six configurations

—two in (1) and four represented by (3)—we froze
3v&, 3v„as obtained in step (3) and optimized
only 2w„2~& as indicated in step (4). This was
found to lead to an optimization "error" &-0.0010
a.u. at all separations.

In step (5) we obtain the remainder of the cor-
relation pertinent to the bonding. This consists
of two kinds of excitations —one representing the
remaining part of the correlation that is essen-
tially molecular, the other that represents the
correlations among the valence electrons on each
center modified by the bonding. This latter
needs a different treatment owing to the fact that
these excitations are quite numerous even when
optimized. Although their individual contribu-
tions are small, they add up to a significant ef-
fect. Before we describe our techniques to han-
dle these terms, we consider the sort of excita-
tions that we finally selected. The criterion for
this selection, of course, depends on the accura-
cy we are aiming at. In the present calculations
we set our limit of accuracy as 0.1 eV in the
bonding. We verified that the correlation in the
inner shell 1v&, 1v„, 2v&, 2v, (1s and 2s atom-
ic shells) as well as their cross-shell correla-
tion with valence shells (2P atomic shells) does
not take any significant part in the bonding to this
accuracy. Certainly at internuclear distances
smaller than the equi. librium value these correla-
tions show some appreciable changes; however,
at such distances the nuclear repulsion overshad-
ows such small changes. Thus we confine our-
selves only to the correlation in and between the
shells 3(T&, 3o„ lm„, 1m&. The configurations
we selected in step (5) are of two types:

Type I(a), (core)lv„&'le& „'3v& „mv&,no&, ('Z+ x'Z'), m &4, n &2;

Type I(b), (core)lw, &'1m&, '3 &v, Am& „nm&, ('Ax'b, , or 'Ax'b, or, '4x'4, or '4x'C, etc.),
~ ~ ~, etc. m & 1, n & 2;

Type II(a), (core)lv„'l~&'nv+, ', n &4;

Type II(b), (core) lm, 'Iv&'(nm, +)'('Z '), n & 2.

The symmetry indices g, M are permuted in all
different ways subject to the symmetry require-
ments of the state 'Z&'. We now describe the
method we have followed to obtain these terms:
A second-order perturbation series for the ener-
gy

(4)
I 0

will involve two types of integrals (O~H ~i) corre-

sponding to the two types of configurations shown
above. For the Type II functions we have, using
Roothaan's' expansion formalism and suppressing
any constant factor,

(0|Hei& =D,„'XD„„
where X=—(K~q „)is the exchange supermatrix
and D „&,D„.represent the "density matrices"
for the valence and excited shells. For the Type
I, let 1, 2 represent valence shells and 3, 4 the
excited shells. Then, again in expansion formal-
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ism and suppressing constant factors,

&OiHiz) =D„'gD„, (6)

XD, ic,„=eSC „+QeiSCi, (8)

where $ is the overlap matrix and the e's are the
usual Lagrangian multipliers arising from the
constraints of orthonormality. It is clear that
since we do not propose to alter D„&, the solu-
tion of Eq. (8) is noniterative and can be per-
formed immediately. A similar situation holds
in the Type-II case. Let us first assume that C3,
C4 belong to different symmetry species X and X'.
Then the equations to maximize coupling (6) are

where D;~ is a cross-shell density matrix given
by

ij pQ' &P JQ'&

and 8 is some linear combination of the Coulomb
and exchange supermatrices. " A fast conver-
gence of the series (4) can be secured if ii)'s
are obtained such that the corresponding term in
the series is a maximum under the constraints
of orthogonality to all the orbitals obtained al-
ready. We prefer, however, to extremize just
(OiHii) for getting these orbitals. We thereby
avoid the lengthy iterative processes; further it
is not necessary to obtain ii) for each term of the
series. Only one extremization for each type
will yield all the excited orbitals as eigenfunc-
tions belonging to the respective type. Let us
consider the equation to extremize the coupling
represented by Eq. (5):

given by

Mx~ C, =S~C3+QJ e3JS~Ci,(X)

C3=S~ 'C~+QJ AS), J, ( )
where the summations are over all orbitals be-
longing respectively to A. and X' excluding C, and
C4. Mzz. is given by

Mxp, x'q Z~kpk'q, pr p's 12rsirs
with p. , p, ' being the symmetry species of 1 and

2, respectively. After an easy manipulation
Eqs. (5) are uncoupled to yield

Mqq (Sq '—QJ CJCJ )M~g. C4=e Sg C4,

M„„.(s, . '-g,&"'C,C, ')M„,'c,
= e'S),c„(10)

which can be immediately solved. When C„C4
are of the same symmetry species it can be
shown that their linear combinations

u = C3+C„V = C3-C4,
satisfy

Mu =eSu, Mv =&'Sv,
provided the supermatrix in Eq. (6) is symmetric.

We report below the results of calculations on
F„carried out along the above lines. The basis
set used in these calculations is slightly inferior
(0.001 a.u. in the hf energy) to the one used in
earlier reports. This choice of the basis set
(namely a common basis set for g and u symme-
tries) was motivated primarily by economic con-
siderations. The basis set, which consists of 18
cr functions and 10 m functions, rules out the Type
I(b) excitations automatically, a.lthough on the

Table I. Energy analysis.

Contributin

terms

clear
ation
u. )

2.2 2.68 3.0 3.5 6.0

Two Main Configs.

(i.e. 3a 8 3a )
2 2

g u

-198.4324 -198.7679 -198.84287 -198.84193 -198.8296 -198.8178

Col. 4 of Table IX, Ref. 5

Basis function 8 extra

mol ecul ar correl ati on

correction

/6-Conf. function

The a tomi c correl a ti on terms

Total energy

-.0130 —.0093 -.0056 —.0036 —.0013 -.0002

-1 98.4760 -198.8171

-.0394 -.0325

-198.5284 -198.8589

198.8834
I

-198.8716 -198.8437

-.0250—.0253

-198.9143 -198.9002

—.0286

-198.8736

-198.8178

-.0384

-198.8564

-198.4454 -198.7772 -198.84853 -198.84551 -198.83094 -198.8180
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basis of atomic correlation energies and other
numerical checks me believe that individual con-
tributions from the excitations considered cannot
be off by more than 10% of their calculated val-
ues,

Table I gives the energy versus internuclear
distance for the various sets of configurations.
The first row gives the double-configuration [Eq.
(2)] values with the present basis set. They dif-
fer slightly from the values of Ref. 5 owing to the
difference in the basis sets. The second row
gives 8-configuration values of the same refer-
ence and the difference betmeen the first and sec-
ond rows given in the third row will be used to
correct for the basis set as well as for the fact
that we have not included any Type-II excitations
in the present calculations. The fourth rom gives
the values for the 6-configuration function dis-
cussed above. The fifth rom gives the contribu-
tions from the "atomic" excitations. The sixth
row gives the energy values for our final poten-
tial curve. The Dunham's analysis of this curve
yields the spectroscopic values given in Table II.
As to comparison with experiment, we make the
following remarks: First, our wave function
lacks completely in Type I(b) configurations
which from independent evidence should contri-
bute of the order of 0.01 a.u. at the separated-
atom limit. We can make some rough estimate
of how much of this goes into the binding energy.
We observe that at large internuclear distances
4o&, 4o„, 3m„, 3m& are atomic 3p functions while
5@&, 5g„, 47l' kg are 3d functions. We can ex-
pect that it is the same 3d functions which will be
involved in the Type I(b) excitation involving a 5-
species excited orbital. Thus me argue that the R
dependence of these excitations mill be as strong
as that of any of the excitations 3a+1m&, 4m&

From atomic results the 2pg-2pw correlation in
two F atoms is -0.05 a.u. Thus the Type I(b) ex-
citations could contribute -0.01 a.u. at large R
and, using Table II for the 3a&17Tg 5Q'g kg
excitations, -0.003 a.u. at B = 2.68. This indi-
cates that the inclusion of such excitations would
lower our binding energy; however, improve-
ments in the basis set and orbital optimization
mill certainly raise the value of 1.57 eV. In con-
sidering the counterbalance effects we feel that
the results support a binding energy for F, of
1.6 eV and do not support the recent value of 1.39
eV (see Table II).

We have thus shown above how to quantitatively
separate out and evaluate the "molecular" as-
pects of the system of two approaching atoms (by

Table II. Spectroscopic constants.

Source

This calculation

Experimental

+e
(a.u.)

2.69

2.68

De
(eV)

1.67

1.39 + 0.03
1.49 +0.07
1.68 +0.09
1.66 + 0.06

1.66'

Me
{cm )

1021
892g

means of a series of limited MCSCF computa-
tions yielding a set of optimal orbitals which are
then employed in a larger CI calculation) and how
to take account of remaining correlation which
can be labeled as "atomic" (by a modified per-
turbation approach). We feel that such a separa-
tion is of paramount importance in making quan-
titative predictions about the chemical bond and
energy surfaces particularly as the arduous
search for tractable methods of attacking the cor-
relation problem is extended to larger molecules.

*Based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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