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either hypothesis.

~For an account of these and other accepted classifi-
cations see, e.g. , Advances in Particle Physics, edited
by R. L. Cool and R. E. Marshak (Interscience, New
York, 1968), Vol. 2, especially Barbaro-Galtieri and

references therein.
N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109

(1969).
3Here "s.d." stands for "standard deviation. " The

symbols ( )«, and ( ),h indicate whether the standard
deviation has been estimated from the sample, or cal-
culated theoretically.
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The recently proposed fixed cuts are dualized. The resulting functions apparently allow
construction of parity-doubling —free models for arbitrary processes. Applications are
made to the reciprocal and meson bootstraps.

A very simple idea for avoiding parity doubling in fermion Reggeization has recently been proposed
by Carlitz and Kislinger. ' The point is to sum Feynman graphs with the appropriate Dirac projection
operators for the desired parity. Thus in p-A scattering, keeping only natural parity, one considers
sums of the form

where m. is the jth mass and P is a Legendre polynomial. m has a branch point at j= n(0), where
o.(s) is the corresponding Regge trajectory, so there is a fixed cut in the j plane at the trajectory in-
tercept.

Our task here is to dualize this mechanism, that is, to investigate possible supporting dynamics in
cross channels. Within the framework of our functions, we find the same branch points in all cross
channels. This is uneventful for baryon channels, and allows construction of a model for the recipro-
cal bootstrap without parity doubling. However, such cuts appear also in meson channels. In fact, it
appears that the mesonic cuts can be taken to serve the same purpose as the baryonic: Extending the
projection-operator idea to all fermions, including quarks, we construct dual meson-scattering am-
plitudes without parity doubling.

A possible overall picture emerges: Positive-energy-projected quarks form a unified dual parity-
doubling (ghost)-eliminating mechanism for all hadrons. Apparently, parity-doubling (ghost)-free
models can be constructed for any process. Two points need emphasis, however. First, for reasons
mentioned below, we examine parity doubling explicitly only for leading trajectories. Second, and
more important, is the need to determine whether the data will support bosonic cuts. In the case of
most interest, (the possible p cut in) )T-K charge-exchange scattering, it appears however that a de-
tailed dynamical calculation will be necessary to ascertain the strength of the cut. This we do not
attempt here.

The functions we need are defined by the following integral representations:
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where the Regge trajectories in s and t are given by n, (s) =a, +s, n, (t) =a, +t, and, for convergence,
o is a negative real number. Changing variables on integration according to 1—zx=u, (1-z)/(1-zx)
=v, one easily shows that

B," (n, (s), n, (t)) = (a)B,' (n, (t), n, (s)).

Like the more conventional B functions, our new functions consist entirely of poles in s and t. This
is easily seen by expanding the integrands in power series with respect to z. The residues of poles
are polynomials of the correct order in t. For reference we exhibit the leading trajectory, which in
the s channel is identical for B ' and B

BP'(n, (s), n, (t))- Z(,)
" t~(m;, )

'
S

(4)

where m, = (j—a,)"' is the jth mass in the s channel. Notice that the residue is just the usual Vene-
ziano residue times the factor m

The behavior of the function for large t can be studied through a modified Mellin transform,

B,(n, (s), A) =—sin(7/A. )$ dt t " 'B,~'(nz(s), n, (-t))
1
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where the extension of the lower limit in t to 0 does not affect the A. -plane singularities of interest.
For the leading singularities in the ~ plane, we need only consider xz-0, and, more precisely, when
both variables are small. Then, the integrals can easily be done, to yield the result

X —a, ",r(1+x) z-n, (s)

where we have used

I-z-ln(1-xz) —xz, —ln —z (1—x),I-zx

etc. This is the Regge pole with a multiplicative fixed cut at j =a, . Of course, there are multiplica-
tive fixed cuts at the intercept of each subsidiary trajectory as well.

We have not been able to construct satisfactory functions with fixed cuts only in one channel. As
easily seen from Eq. (4), any simple attempt to remove, say, the t-channel cuts results in fixed poles
in t. We have presented only the functions with cuts in both channels because (a) cuts are, of course,
what we want —to kill parity doubling in other channels —and (b) the cuts are not required to move by
unitarity.

On the other hand, it is possible to change the degree of the branch points in the two channels. For
example, the function

I 1 I' (n (s) n (t)) —= J dxf dz z a~'~+~/2(1 zx)(o-~) /t2-1(1 )-l-g, ~ ~/1 il r/+21"(-o/2) 0 o
&~)

..t' 1-z &'-'»'r(1-(1+o/2)zx), (7)-ln (—lnx) ' "'~ 1— zx
~1-zx 1-zx ~ r (1-(1+T/2)zx)

has all the same leading trajectory properties as B,~'~, except that now factors of (m, )' and (m, )' ap-
pear in the s and t channels, respectively. The antisymmetric counterpart can easily be written as
well, and finally B ')=B ('~.

As our first application of the new functions, we present a dual model of the reciprocal bootstrap
without parity doubling —consisting only of s-u-channel baryon resonances in n-N scattering. To sim-
plify matters, we take the N and & trajectories degenerate, and call them n(s) [or n(u)]. The model
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1s

A ' 2&= M[C,B,+ + 2C,B, ]+[ g(C2-4C, )B„,' —(4C, + 2C,)B,„],
X "/'& =M[C,B."& -C,B.(-&]+ —,'[(C,-4C,)B.„('&+(2C, + C,)B.(-& ],

where M is the nucleon mass, and

I
T (1/2 & (3/2 & ~ (pI)iQ (1/2 & (8/2 &(~ (s) 4 ~ (+) i)+ B(1/2 &, (3/2 &(+ (s) 4 + (+) i) + (p)2) 2 2 p

In the standard manner, the superscripts refer to isospin in the s channel. The leading trajectory is
free of ghosts. if and only if,

C2+ 2C, (0, C,-C, )0, (10)

where the C's are otherwise arbitrary real parameters.
The N and 4 trajectories can be split by introducing satellite terms. Signature for the 6 trajectory,

lacking in the above model, can be incorporated by adding s-t and u-t terms which contain mesons in
the t channels. ~ If we use the same B functions for these terms (and we seem forced to do so), the
meson channels will also contain the fixed cuts.

In fact however, the location and strength of the mesonic cuts appear to be dynamical questions.
For example, using satellite terms in our functions combined with ordinary beta functions, we can
push the mesonic cuts arbitrarily low. Thus it appears that theoretical calculation of meson cuts in
m-N must await considerations of factorization; that is, m-N should be included in a larger bootstrap.
In particular, we comment that even a large cut contribution for the pion trajectory may not be unde-
sirable.

One last comment is in order here, before proceeding to mesons. The reader will notice that, with
our functions, only the leading trajectory is obviously free of ghosts (and parity doubling). We can
construct models which have pami for nonleading trajectories as well. However, this can apparently
be done only for one channel at a time —the other channel picking up undesirable properties again, in-
cluding fixed poles. In any case it is not clear precisely which particles on lower trajectories are
ghosts, so we leave this question open for the moment.

Our next application is to the (four-point) meson bootstrap. By associating a projection operator
with each quark line in the meson duality diagrams, we can project out all the parity doubling (all the
ghosts) in the so-called "Born term. "4'' Our notation will be that of Ref. 5. I et q; be the incoming
meson momenta, and define p—:q, +q~, p, —:q~+q4 (p '=s, p, '=t). Now as a mnemonic, we first write

Tr[I",(q, )A, (p, , rnJ )I', (q, )A, (p„m/, )I;(q, )A (p, ml, )I', (q )A (p„m/, )](m/ m/, )',

where I'/(q/) are the relevant spin factors for the incoming mesons, and

A, (p„mi., ) = (1—zx)' ' + (zx)', A, (p„m/, ) =z' ' "+ (1-z)'+js mit
(12)

act as projection operators in their own channel and unity in the other. mJ and rg~, are to be thought
of as the jth masses in the s and t channels, respectively. v is an arbitrary negative number, intro-
duced so that all powers of m/, ml, in (11) are negative. To use the mnemonic, expand it as traces
of I"s times powers of m J, and m J, To realize the model, simply replace, in this sum, every term
of the form ~i 'lJ, '

by B „('&(n(s), n(t)) [with the relevant factors of (1—zx)', etc. ]. The construc-
tion is evidently quite arbitrary, using subsidiary terms, and points to the need for systematic study
of factorization. Our point here is only that models can be constructed.

To see that all parity doubling has been projected out, we factor the traces as in Ref. 5. Because of
the projection operators, the relevant identity, say at a pole in s, is

Tr[A (p„ping/, )AA, (p„m, )B]= Tr[A&T/(p, )]Tr[~/( p, )B]+Tr[Ap/—„(p,)]Tr[p (p, )B],.
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where

(14)

and A. and B are arbitrary matrices in the Dirac space. Factorization in t is identical. The model is
entirely free of parity doubling (ghosts), on the leading trajectories; in fact, at l =0, there remains
only one p and one s-whose spin factors are (14). As in Ref. 4, the A, (etc. ) is at l=1. Internal sym-
metry considerations may be taken unchanged.

In the language of conspiracy theory, we have then seen that (quark) projection operators can re-
move parity doubling from M= 1 (meson) conspiracies, as well as from M= 2 (baryon) conspiracies.
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