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Two idealized collapse models, involving a magnetic dipole and a gravitational quad-
rupole, are analyzed, treating departures from sphericity as small perturbations. Ra-
diative leakage (largely downwards through the Schwarzschild radius) causes externally
observable asymmetries to decay to zero in an oscillatory fashion, with a period of the
order of the Schwarzschild characteristic time 2Gm /c3. These results have significant
consequences for astrophysics; they imply in particular that a “black hole” cannot be

a source of synchrotron radiation.

Every static nonspherical perturbation of
Schwarzschild’s exterior field due to gravitation-
al or electromagnetic sources within the station-
ary lightlike surface g,,=0 becomes singular on
this surface.!™® Stationary perturbations of
Kerr’s rotating solution appear to have a similar
property.? Assuming these results to be applica-
ble to the asymptotically stationary exterior field
of a collapsing star, one is led to conjecture that
all externally detectable asymmetries,! including
magnetic fields,? must somehow decay, leaving
behind Schwarzschild’s vacuum field (or, in the
case of nonvanishing angular momentum, Kerr’s
field) as the sole external manifestation of the
collapsed object.

To examine these questions, we have carried
out a dynamical analysis of two idealized col-
lapse models, one involving a magnetic dipole,
the other a gravitational quadrupole. Our results
support the foregoing conjecture and reveal the
decay mechanism to be a rapid radiative leakage
of the asymmetric perturbing field, largely
downwards through the event horizon.

We cast the Schwarzschild metric into the form
(ds®) schw = adxdy +7*dQ*, where a =1-1/7, and
the retarded and advanced time coordinates —x,y
are related to the standard Schwarzschild co-
ordinates by x,y =(r—=1) +In(r-1)¥¢. Lengths are
measured in units of the Schwarzschild radius:
2m =1.

Both of our models can be considered as lin-
early perturbed variations of the following basic
situation (Fig. 1). A thin, hollow spherical shell
of mass m =3 is initially static with radius R,
>1; at time t =—3x,=—(R,—1)-In(R,~1), it sud-
denly begins to collapse at the speed of light
(history of surface y =0). (This model, adopted
for mathematical simplicity, is highly artificial

from an astrophysicist’s point of view, but does
not violate any of the principles of relativity the-
ory. Moreover, our main interest is in the
asymptotic behavior of the external field as ¢
-, and we do not expect this to depend too sen-
sitively on the precise structure of the source
or the initial conditions.)

In our first (“magnetic collapse”) model, we
suppose a static magnetic dipole of moment p
placed at the center of the shell. (It is assumed
that u®<1, which means gravitational effects of
the magnetic energy density can be neglected for
r=1.) Our second (“quadrupole”) model assumes
a weak gravitational quadrupole of moment q su-
perimposed on the spherical background field
and caused by unevenesses in the surface density
of the shell.

Since news of the onset of collapse cannot
reach the interior ahead of the shell itself, the
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FIG. 1. Space-time diagram for collapsing shell
model.
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initial static interior field (region I in Fig. 1) re-
mains unchanged in both models. The exterior
field, however, becomes time dependent after
passage through a shock front at x =x,. The
problem is thus to find the perturbing field in the
time-dependent region x <x,, y =0 (region III in
Fig. 1), given Cauchy data on the characteris-
tics y =0, x =x,>1. (It is unnecessary to dis-
tinguish, at this level of approximation, between
null hypersurfaces of the Schwarzschild back-
ground field and of the gravitationally perturbed
field.)

To formulate the magnetic-collapse problem,
let us write for the covariant azimuthal compon-
ent of four-potential A ,=y(x,y) sin®§. The elec-
tromagnetic field equations on a Schwarzschild
background then yield

pry =f (T)ZP, (1)

where f = a/27% and the subscripts indicate par-
tial differentiation. The appropriate initial static
solutions are ¢ =y /r for the flat (¢ =1) interior
domain » <R,; and for » 2R,

<p=const><r2f(r—1)°lr'3drz p/r (Ry>1).

(The remaining components A, vanish.) The
characteristic initial conditions supplementing
(1) in the time-dependent region are thus ry=pu
on both x =x, and y =0. (The jump conditions for
the electromagnetic field require continuity of
A, across a characteristic surface.)

Figure 2 shows some results of a numerical in-
tegration of this characteristic initial-value
problem. To a stationary external observer the
field appears nearly constant (»y = ) for a peri-
od about equal to the Newtonian free-fall time,
i.e., down to x 0. The epoch x ~ 0 is marked by
the fairly sudden onset of an oscillatory decline

ey (xr)
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towards zero with period ~47. On the horizon »
=1, ¢ displays a similar damped oscillatory be-
havior as a function of y. A free-falling observ-
er close to the collapsing body sees no decline
of the field, but we can find no support (at least
in this idealized model) for a suggestion of Ginz-
burg,? based on a quasistatic analysis, that the
field becomes infinitely compressed against the
body.

To see what becomes of the external magnetic-
field energy, we integrate the identity

8, (¥)" +HfY?) =8 (¥, +f¥7), (2)

which is an immediate consequence of (1), over
region III of Fig. 1. In the limit x,~ «, we find

I, +1,=5u?% where I, =5[7 ¢ %(x, ©)dx and I,
=3J59,%(=,y)dy. Physically, (2) is just the ex-
plicit form of the law of energy conservation
3al(-8)*?T*Ptg ]=0, where &4 is the timelike Kill-
ing vector and T°® the electromagnetic energy
tensor. It follows that I, and I, represent the
electromagnetic energy radiated out to infinity
and in through » =1, respectively. Our numeri-
cal integrations show that I, =0.010u2 and 7,
=0.240p>, so that about 96 % of the field energy
falls in through the Schwarzschild radius. (The
difference between the magnetostatic energy 32
initially present outside » =1 and the total radiat-
ed energy 342 is exactly accounted for as the
work done by the difference of the electromag-
netic stresses on the two sides of the shell, and
goes into increasing the kinetic energy of the col-
lapsing body.)

Turning now to gravitational perturbations, we
note that, in the coordinate gauge of Regge and
Wheeler,” a generic spherical harmonic compon-
ent of any linearized vacuum perturbation of the

-0.5 N/

FIG. 2. 7y as a function of retarded time (-x) for stationary observers with radial coordinates equal to 1.5, 2.5,
and 4 Schwarzschild radii. The vector potential A= 'é(w)r‘ Ly sinf, where E(w) is a unit azimuthal vector.
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Schwarzschild metric may be written
ds?=(dsDschw = [30%(ndx? + Edy?) +r?Kd?]
X P (cos#),

where K, &, and 77 are functions of x and y. (In
terms of the quantities H and H, used by Regge
and Wheeler, an=H-H,, at=H +H,.) The vac-
uum-field equations for the perturbations, which,
as usually given,® have a complicated appear-
ance, assume the following neatly separated
form in terms of &(x,7r), n(y,r):

v’y +2r°10,, +6rn ), +7(3-a)n,
=(I+n=0;  (3)

&(x, r) satisfies an equation of the same form
with y replaced by x; and

Kr(y’ ')’) =277y+0!_1(0£277) r
K (x,7) =28, +a™H(a%) . (4)

Testing a perturbation for regularity as » -1
or v -« is complicated by the occurrence of co-
ordinate singularities of the Regge-Wheeler
gauge.® Examination shows that the geometry is
regular on the future event horizon » =1, { =+
if K, n, and o®¢ are bounded there. At future
null infinity, assuming outgoing radiation with a
Bondi news function® c(x, 6) =f (x)P ?(cos6), the
condition for asymptotic flatness is

K—=2"(x), n/r=--4"(x), £=0(r"?
(r - =, x fixed).

For our quadrupole collapse model, we set [
=2. The static quadrupole field superimposed on
the flat interior of the shell (replace « in the pre-
ceding formulas by 1) is given by £=n=K =2¢7*
(gR,2 «< 1), while the initial static external field
is

£ =n=ba'rzf:’a'31f"6dr (= Ry, x = x,),

where the constant b ~ 10gR® is fixed by contin-
uity of K across r =R,,.

The appropriate junction conditions (continuity
of K,n and of K, £ across y =0 and x =x,, respec-
tively) now yield

n=K=2q7%, n,(r,y)=0o0ny=0, <R,
ExK=2qR,°/r®, &,(r,x)=0onx =x,,
r>R,>1, (5)

as characteristic initial conditions for the time-
dependent region.
To make the problem definite, let us assume

f"(x,) =0, i.e., that gravitational radiation is ab-
sent initially. Then the expression

n=2qrz—i% qr ~%3(y% +5x,y +5x,7) (6)

solves (3)-(5) uniquely for o =1, and therefore
approximates the initial form of the actual solu-
tion for x > 1, when 7 is large throughout the ex-
terior region.

To determine whether the exterior quadrupole
field eventually damps out, we eliminate y from
(3) by a Laplace transform. Writing » ~3Z (s, 7)
for the Laplace transform of 2¢r*-5(y, 7) [also a
solution of (3)], we obtain the ordinary differen-
tial equation

v (r-1)Z .+ (2s7*=4r + T)rZ .—15Z =0, (1)

and, from (8), Z(s, ©) =%¥gs~%+0(s ~%). There is
a unique solution of (7) which takes an assigned
value at » =~ and remains finite at »=1. Now,
a WKB analysis combined with numerical inte-
gration shows that

lim (Z(s,7)/s°Z (s, ©)]= (4/15)7°

s >0
for any solution of (7) which is bounded at »=1.
We thus obtain s» “3Z -~ 2¢7? as s =0, which indi-
cates that n(r,y) -0 as y — « for a stationary ob-
server with » =21, It follows that K and ¢ also
tend to zero. We have confirmed these conclu-
sions by a direct numerical integration of (3);
again, the decline towards zero has an oscilla-
tory character.

Our results have an important bearing on the
question of the observability of collapsed stars
and their distinguishability from neutron stars.
Unlike neutron stars, which can remain intense-
ly magnetized for periods exceeding 10° years,

a collapsed object cannot be a source of synchro-
tron or other radiation requiring the agency of
magnetic fields. However, accretion of inter-
stellar material in a favorable environment, e.g.,
in close binary systems, could produce a strong
source of thermal x-ray bremsstrahlung.

All numerical integrations were carried out by
Mr. R. Teshima on the University of Alberta IBM
360/67 system, and we should like to extend to
him our deep appreciation. The research of the
first two authors was supported by the National
Research Council of Canada.

Detailed accounts of this work are in prepara-
tion.

1A. G. Doroshkevich, Ya. B. Zeldovich, and I. D.
Novikov, Zh. Eksperim. i Teor. Fiz. 49, 170 (1965)
[Soviet Phys. JETP 22, 122 (1966)]; W. Israel, Phys.

425



VOLUME 24, NUMBER 8

PHYSICAL REVIEW LETTERS

23 FEBRUARY 1970

Rev. 164, 1776 (1967).

2y. L. Ginzburg and L. M. Ozernoi, Zh. Eksperim.
i Teor. Fiz. 47, 1030 (1964) [Soviet Phys. JETP 20,
689 (1965)]; W. Israel, Commun. Math. Phys. 8, 245
(1968).

V. de 1a Cruz and W. Israel, Phys. Rev. 170, 1187
(1968), Ref. 15; K. S. Thorne, “Gravitational Collapse,”
a review-tutorial article (unpublished).

3T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063
(1957).

K. S. Thorne and A. Campolattaro, Astrophys. J.
149, 591 (1967), and 152, 673 (1968); C. V. Vishvesh-
vara, University of Maryland Technical Report No.

778, 1968 (unpublished).

SH. Bondi, M. G. J. van der Burg, and A. W. K. Metz~

ner, Proc. Roy. Soc. (London) A269, 21 (1962).

TESTS FOR EIGHTFOLD-WAY OCTETS IN THE BARYON SPECTRUM

A. P. Roberts and M. Box
Physics Department, Monash University, Clayton, Victoria, Australia, 3168
(Received 8 December 1969)

A search is reported for octets among baryons of spin <3, using the Gell-Mann~Okubo
mass formula as a selection criterion. The likely number of unphysical “chance”’ octets
so selected is estimated by another search using unphysical mass formulas. The findings
discourage reliance on mass formulas for classification purposes, and tend somewhat

against the existence of further octets.

Belief in SU(3) as an approximate symmetry of
the strong interaction rests mainly and under-
standably on the eightfold way’s success with the
“stable” baryon and meson octets, and its spec-
tacular predictions for the baryon-resonance de-
cuplet.’ [We take the eightfold way here to in-
clude assumptions about the symmetry violation
which are sufficient to give the Gell-Mann-Okubo
(GMO) mass formula.] However, there does not
appear to have been any wider investigation of its
power to put in order the whole spectrum of
known hadrons. Some unexpected initial findings
on this question seem worth summarizing.

In what follows, we have restricted ourselves
to the N*, Z* A* and =* baryon resonances of
spin 3 or less, and to search for further octets
only. (It should be noted that, for convenience
but contrary to convention, we allow the aster-
isked symbols to represent the stable baryons
also.) It seemed profitable to test the assump-
tion that some at least of these candidates should
rightly be assigned by SU(3) to octets. An entire
absence of further octets would mean, for exam-
ple, that all the A* are unitary singlets or mem-
bers of the 27-plet, since the decuplet has no 7T
=0, Y=0 member; being forced to this conclu-
sion would itself be interesting.

Now, suppose we adopt some linear mass rela-
tion, and then select octets on the criterion that
this relation be satisfied to within, say, 2%.
Then, provided its coefficients are not too out-
landish, we would expect such a relation to “se-
lect” a certain number of octets (each constant
in spin and parity) just by chance. To find the

426

expected number of such chance octets is hardly
a soluble statistical problem, but we can esti-
mate this number from those selected by a set of
mass formulas lacking any known physical justi-
fication.

On the assumption above, that some true as-
signments to octets exist, GMO would of course
have a head start over any unphysical mass re-
lation, since it would “select” these physical oc-
tets in addition to its chance quota; indeed, the
stable octet quarantees it a start of at least one
octet. This procedure, then, gives a test of the
classifying power of GMO. (The assumption here
that “physical” and “chance” octets are distinct
is easily seen to be justified, as long as the num-
ber of “physical” octets must be small compared
with the number of possible octets; this is al-
ways the case below.)

We also consider a criterion built far more in-
tegrally into the whole SU(3) scheme: the con-
stancy of spin and parity within a multiplet, We
first ignore this requirement and take any octet
satisfying the mass formula (we call these “of-
fered” octets). Suppose there are N possible
combinations into octets, of which only m satisfy
the constancy rule. Then imposing this rule
would, by pure chance, give us an expected frac-
tion (m/N) surviving as “selected” octets; and,
by reasoning similar to the above, the eightfold
way can show its superiority by exceeding this
expectation,

The particle spectrum examined was taken
from the data of Barash-Schmidt et al.> The
N(1860) and = (1385) were omitted since no 3*



