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SE,= E(P —,') —E (P—', ) + pairing,

bE, =E(d,2) E-(da) +pairing,

where p is the number of the odd nucleons in the
shell (odd-hole nucleons in the case J= —,''), n, is
the number of odd nucleons in the adjacent shell
J'=-'„and E(l, j) is the single-particle excitation
energy. The numerical values are calculated us-
ing the parameters given in Ref. 7.

We rema, rk that in the first five cases, the cor-
rections (if not zero) decrease the Schmidt value
(V, is negative); in the last case, the correction
is positive as expected. The experimental trend
is very well reproduced; corrections to these re-
lations are small and do not spoil the agreement
with our previous analysis.

In concluding, . our results suggest the following:
(i) Also in the light nuclei neutrons and protons
can be treated independently, at least as far as
Z,. o,,T,3 and Z~ o';, operators are concerned.
(ii) The effect of the antisymmetrization of neu-
trons and protons on the shell is not so important
as believed, also in the light nuclei. (iii) A sim-
ple configuration mixing calculation using an ex-
treme j-j coupling scheme as unperturbed basis
gives quantitative agreement between experiment
and theory and explains satisfactorily the linear
quenching. (iv) In our approximation (V, —V, =O)
the configuration mixing does not affect the SU(4)

symmetry (the state S= a, T= —, xs not meed to
higher S, T states).

Thus the quenching mechanism in the LS cou-
pling scheme is due to the presence of a mixing
between different L: for example, for J=

&

states, between L=1 and L=2. This puts in evi-
dence that the magnetic moments lie between the
Schmidt lines.
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The motion and radiation of a relativistic classical charged particle in an intense mag-
netic field is analyzed when the radiative reaction force is comparable with the Lorentz
force. Their significance for cosmic problems, especially the acceleration and radia-
tion of cosmic-ray electrons in pulsars, is discussed.

In the conventional theory of synchrotron radia-
tion the electron is treated as a classical parti-
cle whose trajectory is unaffected by radiation
energy losses. In an intense magnetic field two
corrections, the quantum-mechanical nature of
the particle and the effect of radiation reaction
on the particle's trajectory, should be consid-
ered. The quantum effect becomes important
when the energy of emitted photons is compa-
rable with the particle energy, i.e., when hy'~~/
ymc2 = y~H/a&a, —1,' where y= E/mc represents

the energy of particle and ~H =eP/mc character-
izes the strength of the field; &@0=3mc'/2e'= 1.8
&10"sec ' is the fundamental frequency of a
free electron and n =e'/Sc is the fine structure
constant. The radiative -reaction effect becomes
important when the reaction force becomes com-
parable with the Lorentz force, or equivalently,
when the lifetime of an electron against synchro-
tron radiation becomes comparable with its
I armor period, i.e. , when y'&u~/w, =1.'

Quantum-mechanical treatment of synchrotron
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radiation has been studied in the past." Recent-
ly Chiu and Canuto' have considered its applica-
tion to pulsar emissions. On the other hand,
synchrotron radiation at strong radiative damp-
ing has never been exploited in detail. ' Compari-
son of the two parameters, y&u&/o. m, and y &uH j
coo, shows that radiative reactions predominate
quantum effects in an intense magnetic field for
particles of energy y &137. Therefore, for high-
ly relativistic particles one can always study the
effect of strong radiative damping within the
realm of classical electrodynamics. In present-
day laboratory experiments, the effect of radia-
tive reaction on synchrotron emission is always
negligible. But this may not be true for cosmic
problems, especially when the radiation is emit-
ted by high-energy electrons in a strong magnet-
ic field, such as the magnetosphere of a neutron
star. Take the Crab pulsar as an example; the
copious x- and gamma-ray emissions from the

surrounding nebula. require a continuous supply
of high-energy electrons up to E -10' BeV.'
Several authors' have suggested the magneto-
sphere, or its near surroundings, of the central
neutron star to be the site of acceleration. Take
P= 10 6 to be a typical field strength in regions
of acceleration and emission. We observe that
for electrons of energy between 50 and 10' BeV
the condition 1 ~ y arH/~, & ey prevails. This
condition implies a strong coupling between field
and particIe but with negligible interference from
the quantum effect.

In this paper, we shall first analyze the trajec-
tory of a classical relativistic particle with
strong radiative damping, then proceed to com-
pute the frequency spectrum of its radiation. Im-
plications of the present work in astrophysics
will be discussed briefly along the way.

The general equation of motion of a classical
charged particle in an electromagnetic field is'

U, = FgpU +no '(UJ- 2UiU UI, )—, i=1 to 4,

where F;& is the electromagnetic field tensor, Uz is the four-velocity, Uz=dU&jd&, and d7 is the prop-
er time.

The first term on the right of Eq. (1) represents the Lorentz forces which ordinari1y control the par-
ticle motion. The second and third terms represent forces due to radiation reaction. The ratio of
these two forces, as mentioned above, is given by R=f~/fz = y'&u~/&u„which also represents the frac-
tional energy loss per revolution. The validity of Eq. (1) has been discussed extensively in the litera-
ture. " Of all restrictions the most stringent one is that classical electrodynamics breaks down at
y&u&/+, -1/137 due to the quantum effect. Hence Eq. (1) may be considered reliable at R/y«1/137.
This restriction obviously does not exclude its application to cases of strong radiative damping (R-1)
for highly relativistic particles We s.hall therefore solve Eq. (1) for finite values of R but neglect all
higher order terms of y ' and y 'R.

The term U Ug, in Eq. (1) is a four-scalar; thus it must equal U Uj, in the instantaneous rest frame
of the particle. In this particular reference frame the particle sees an electric field yPPsinC, where
@is the angle between the instantaneous velocity v and the field H. We find, to the lowest significant
order of y ' and y 'R,

U Ul, = y'c'ruH' sin'4[(1+ y/~, y)'-(y(oH sinC /(o, )']. (2)

With the help of Eq. (2), Eq. (1) can be solved to give U~(r). For practical purpose we must trans-
late these covariant quantities to the ordinary space and time variables of the observer. Using the re-
lation

1t= f y(7')d7' . = f U, (7'—)dr',

we find after some tedious calculations

dy y'&u~'sin'4
1 6

R '
cM coo

y(t) = yo[1+Ro(&u&t jyo)(1-6RO yo 'sin 4'0) sin 40]
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v, (f ) =v, [1—&(t)] sinC, cosf (f),

v2(t) = vo[1-h(t)] sinC 0 sinf (t),

v3(f) —vo cosC'0~

(5.1)

(5.2)

(5.3)

(
R sin 4 td+t ro~t

2YQ YQ

The subscript 0 denotes initial values at t =0.
We have chose H Ilz axis and v, (0) =0. The lead-
ing term in h(t) is —(Ro /y, ')(m~t/y, ), which is
entirely negligible unless f —Y,3/R, '&oH, but the
particle is then nonrelativistic and the approxi-
mation we used is no longer valid. The term
h(t) is kept in Eq. (5) just to indicate the small-
ness of the variation in the particle pitch angle.

The trajectory of the particle as described by
Eq. (5) is a shrinking helix (Fig. 1). The radius
of curvature p(t) =v'/v, decreases as (1+Y,
XR~~t sin'C) '; after completing the first cycle
both p and the particle energy are reduced by a
factor of (1+4mR sin@) '~'. Two interesting
points may be brought to attention: (1) The radi-
ative reactions modify the instantaneous energy
loss rate only slightly [to the order of (R/Y)'].
This results from the fact that forces exerted by
radiative damping are mostly along the direction
of v while the force exerted by the magnet. ic field
is perpendicular to the velgcity. For comparable
parallel and perpendicular forces the total radia-
tion due to the parallel component is of the order
1/Y smaller than that from the perpendicular
component. Thus within the range of validity of
classical electrodynamics radiative reaction

forces cannot change the instantaneous emission
rate significantly, although alteration of the orbit
of the particle could be large, hence the effect on
the frequency distribution of the total radiation
may be significant. (2) The decay rate of the
angle between the velocity vector v and the field
H is much slower (by a factor of Y 2) than the de-
cay rate of the particle energy. In the nonre1. a-
tivistic case radiation draws all of its energy
from the perpendicular component of motion.
Therefore, the particle's pitch angle decreases
with the reduction of its energy. ' A nonrelativis-
tie particle injected randomly into the field would
lose about ~3 of its initial energy, then stream
along the field line with no further radiation ener-
gy losses. But this is not true for a relativistic
particle. Although the particle's radius of gyra-
tion decreases quickly at strong radiative damp-
ing, th,e pitch angle remains practically constant.
In the pulsar theory of origin of cosmic rays,
radiation energy losses have in general been ne-
glected. One of the arguments is that synchro-
tron radiation only drains the transverse momen-
tum of particles. Therefore in a regular field,
such as the neutron-star magnetosphere, a par-
ticle will stream out along the field lines and re-
tain a substantial portion of its energy in the
longitudinal component. This, as has been
shown, is not true. For example, in a region of
P= 10' G, the energy of a 100-BeV electron re-
duces to 100 MeV after traveling a distance 1 km
(and gyration of about 40 cycles). Unless an
electric field of enormous strength' exists to
prevent the curving of particle trajectories, rela-
tivistic electrons can hardly get out of the vicin-
ity of the magnetosphere, not to mention acceler-
ations.

The radiation spectrum of a particle is related
to its trajectory by"

2
f «x ( x «) i&@(t n r/e) -~2 (5)

FIG. l. Orbit of a charged particle moving in the
plane perpendicular to H at R =y2~~/cup = l.

It is well known that radiation emitted by a
relativistic particle is concentrated in the for-
ward direction of motion. Inspection of Eq. (5)
shows that the volocity vector v repeats its di-
rection after certain time intervals. Thus a dis-
tant observer located on the surface of the ve-
locity cone will record successive pulses of ra-
diation at those moments when the par ticle is
moving toward him. However, unlike the case
of ordinary synchrotron emission, the orbit of
the particle at strong radiative damping is not
periodic. The time intervals between successive
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t=t n

(1+47)nR,)"' '
~y

~0 — ~II

while the energy of the emitting particle is y(t„)
=y, =y, (I+4nnR, ) "'. The observer records a
series of closely packed pulses. The time inter-
val between successive pulses decreases while

the duration of each pulse increases. The total
radiation from the particle is the superposition

pulses, as well as the character of each pulse
are not the same. For simplicity, let us assume
the particle is moving in the plane perpendicular
to H. Since radiation damping does not change
the pitch angle of the particle, results obtained
in this special case can be extended to the gener-
al case following the same procedure used in
conventional synchrotron theory. " Ne shall in-
dicate the modifications introduced due to e, 0
in the final paragraph. But here let us consider
an observer located near the x axis with the
particle moving in the x-y plane. From Eq. (5)
we see that he receives bursts of radiation when

v, (t)=0, or at

(Assume the particle injected into emission re-
gion just before t = 0.) The nth term in the sum-.
mation represents the Fourier transformation of
the amplitude of the nth pulse. Since the radia-
tion of each pulse is concentrated within a time
interval (y~'~H) ' around t~ where the duration
between successive pulses is y (d& ', the limits
of integration for each term in the summation
can be replaced by +~ after a suitable transfor-
mation of variables. With this approximation,
Eq. (6) can be evaluated, following the usual pro-
cedure of computing the radiation spectrum from
an ultrarelativistic particle,

(d , [A(( '((u) +A ~'((d)] .
3m'Cy02e2 (7 1)

A[['(&u) and A '(~) correspond to the two polariza-
tion components,

of all pulses. Mathematically, this is equivalent
to writing the integral in Eq. (6) as a summation,
l.e.~

f
N (~n + &n + ~) I2

(t& ) + Pn)/2

A((~*(~)=Pa„*(8)(, 'IC„,*( )+(—') a, '(6)IC„,*( ), (7 2)

A,*(~)=Pa,(e)b, 'y, *t('tc„,( ), (7.3)

where

a„(8)= I+yo'8 +47)nRo, I) = 1+4wnRo, (u„= 3yo (u~b~ [a~(8)-Ro /yo']

and 8 is the colatitude angle the observer made with the orbiting plane. K»3 and E,&, are modified
Bessel functions. In Eq. (7) the difference between the spectrum of individual pulse and the classical
expression for radiation emitted by a relativistic particle of energy yn and radius of curvature pn is
of the order of (R /y, )', a result consistent with Eq. (3).

All information about the radiation is contained in Eq. (7). Of particular interest for astrophysical
applications are the polarization and frequency distribution of radiation. The frequency distribution
of the total energy emitted by a particle of initial energy y, is

(8)

I(y„&o) is plotted in Fig. 2 for R= 8&& 10 ', 1 andi

10. In the high-frequency range 9 = (d/yo'u&H

&(I+4nR, ) ' the spectrum varies as ("e
For $ & (I + 47)R, )

' the spectrum var ies as (
If we follow Eq. (6) strictly, the upper limit N
of the summation in Eq. (8) should be ~, the'" variation would extend to zero (or to (d = (d~
where the approximation used breaks down). How-
ever, summation to ~ corresponds to observing
the particle for an infinite period of time. For

a finite observation period T, emission from the
latter pulses (at low w) will be cut off, then
I(yo, ur) would have a maximum at $z = (1+R,(dHT/
yo) 2=y (T)/yo2. For $ & $~, I(&u) varies as $~ ~.

It should be clear now that the conventional syn-
chrotron radiation theory, for which the frequen-
cy spectrum varies as $"' at $ & 1, is applicable
when the particle loses a negligible amount of
energy within the observation time. In a strong
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FIG. 3. Polarization of synchrotron radiation from
a single particle.

FIG. 2. Spectrum of synchrotron radiation with radi-
ative reaction. R =go aH!~o approximately represents
the ratio between the reaction force and the Lorentz
force. I(~) (measured in units of v 3yoe !&) is the en-
ergy radiated per unit frequency by a particle of initial
energy y()m& . The change of slope at very low fre-
quency is due to finite observation.

magnetic field $, is much less than 1. If H=10'
G, for example, (f —= 1/yo' (i.e. , sr~ = v+) for T
=10 ' sec. So in practice the frequency spec-
trum of radiation emitted by a relativistic elec-
tron from a, region of 8=10' G can always be
taken as $

''2 when $.& 1. In order to compare
the variation of I(v) with respect to R we have
nevertheless chosen T = 10 ' sec in Fig. 2. It is
interesting to note that even when R =8&& 10
for which most of the radiation is in the frequen-
cy range below R(d, = 10" sec ', the damping
effects are already significant.

The polarization of the radiation is given by

A (t'((u) —A, '((u )

The values of II(&u) are plotted in Fig. 3 for the
same sets of parameters as I(&u). In the frequen-
cy range of (I+4wR, ) "'»(z, 11(&u) has the com-
mon value of 0.695 for all values of R. At $

«$», II drops to 0.5.
The results obtained above are easily general-

ized to cover the case that the particle's longi-
tudinal velocity e, ~0. One needs to replace H

by H sin4o in all computations. In addition
&(y„~) should be divided by sin'C, to take care
of the Doppler effect on t, the interval between
pulse s."

In reality one of course observes radiation
from an ensemble of electrons. If the particles
are injected into the emission region in a narrow
beam and all possess the same energy, as one

J(R) (d for Q & 3,

for o. &3.

(10.1)

(10.2)

This result, which is derived under the condi-
tion that the emitting particles lose most of their
energy in a time shorter than the observation
time, may be compared with the results obtained
in the ordinary synchrotron radiation theory, in
which the frequency spectrum is proportional to

' "for all values of n.
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would expect from a laboratory experiment, the
power spectrum would look exactly like that
shown in Fig. 2. For cosmic problems the dis-
tribution of the particle is usually near isotropic
and covers a wide range of energy, and the fields
which accelerate the particles are of course
more complicated than the uniform magnetic
field assumed in this paper. Therefore, applica-
tion of the present work to actual astrophysical
problems will be discussed elsewhere. ~ How-
ever, it is illustrative to consider here the sim-
ple case of a power-law electron distribution in-
jected isotropically into the emission region,
where the influence of the strong magnetic field
dominates all other effects. The power emitted
from the region per unit solid angle is

J(~) = (I/4~)JQ(y;)&f (~, y;)&dy;, (9)

where

(I(&u, y~)) = (1/2n) fo I(u, y, (1+Rq 0) '~2)dg

denotes average over the azimuth angle of the in-
jection direction of the particles. Q(y, ) repre-
sents the injection rate. '3 For the case of Q(y;)
=Q,y; "up to a maximum y„, the radiation spec-
trum at co & y„&AH zs
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A measurement of the separation between the components of the binary star p-Cas-
siopeiae to yield the stellar masses has been made. Applying the mass-luminosity law,
we find a helium abundance F- 0 where a 1"0" and 2"o" random error allows, respec-
tively, Y-0.05 and Y-0.34. The measured abundance places an upper limit on the
helium Droduction in a big bang cosmological model.

p. Cassiopeiae is an old binary star system
whose chemical composition is thought to be
characteristic of the early stages of formation
of the galaxy. A determination of the primordial
helium abundance' is of current interest to phys-
icists as a potential means of distinguishing be-
tween relativity theories. Because p, Cas is too
cool to excite the helium spectrum, the star's
helium abundance cannot be determined spectro-
scopically. Alternatively, the mass-luminosity
law of the theory of stellar interiors can be ap-
plied. This law relates the mass and luminosity
of a star to its chemical composition, i.e., once
the mass and luminosity of a star are known, the
star's helium abundance can be determined if its
metal abundance is known. In the case of p, Cas,
the luminosity and metal abundance of the bright-
er component p, Cas A is known, but its mass -is

unknown. From kinematics it is possible to find
the masses of stars that are members of a bi-
nary system. Because p, Cas is a binary, and
enough orbital information is available, the mass
of p, Cas A can be found with one measurement

of the angular separation between the stars.
The problem has been to resolve optically the

two stars which are approximately 1 arc see
apart and which differ in intensity by a factor of
100 at ~ - 5000 A.' The resolution is limited by
inhomogeneities in the earth's a,tmosphere which
distort the incoming plane wave fronts to the ex-
tent that a good stellar image has a half-width 2

arc sec in diameter.
The present experiment is based on the as-

sumption that light rays from closely separated
stars travel along almost identical paths through
the atmosphere; hence at each instant of time,
images of the two stars, although they are mov-
ing about, always maintain the same separation.
An image analyzer has been constructed which
scans the stellar image in a few msec, quickly
enough to freeze the image, thereby taking ad-
vantage of the constant instantaneous separation
between the components. The stars are imaged
on a rotating wheel with narrow slits so that the
light transmitted through the wheel as a function
of time is characteristic of the image profile.


