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The electron g factor is calculated to a high degree of accuracy for the ground state
of hydrogenic atoms. In addition to binding corrections of order (Zn)2, (Zc.)2m/M, and

(Zn)'(m/M), radiative level shifts of order n(Za) and u(Zo. ) m/M are obtained.
These level shifts differ from those previously given in the literature. The origin of
the discrepancies is discussed in some detail.

Experiments are currently being carried out

by several groups to measure, with high preci-
sion, ratios of electron g factors for various hy-
drogenic atoms in the ground state. ' It is there-
fore important to clarify the theoretical predic-
tions and to take properly into account the radia-
tive level shifts.

Hegstrom' has recently obtained an expression
for the electron g factor through the use of a
Chraplyvy-Barker-Glover expansion of a two-
body Breit Hamiltonian, which contains an inter-
action of the system with a small constant mag-
netic field, and which also includes phenomeno-
logical Pauli interactions. " In the work report-
ed here the g factor is calculated by a different
method, using wave functions recently given by
Brodsky and Primack. ' The results of order
(Zn)', (Zo.)'m/M, and (Zn)'(m/M)' agree with
those of Hegstrom and also with experiment.
However, the corrections of order n(Za)' and
o.(Zo)'m/M, which arise from radiative effects,
differ from those given in Ref. 2 and also differ
from some early work done by Lieb. ' The origin
of these discrepancies is discussed below.

The computational aspects of the work report-
ed here are rather involved. Therefore only the
essentials will be discussed and the details will
be incorporated in a more extensive article on

the subject.
For simplicity we consider the hydrogen atom.

Since nuclear spin considerations are unimpor-
tant in determining the electron g factor, the re-
sults obtained here are valid for all hydrogenic
atoms. In the center-of-mass frame the Hamil-
tonian in the absence of a magnetic field is

ZA
H =a, p+P m-n p+P M-

ZQ Ae ~ rAD r

where subscripts e or P denote electron or pro-
ton variables. For hydrogen Z is unity, but
since our results will be valid for Z 1 we keep
Z arbitrary in Eq. (l). If a magnetic field is
present, perturbations arise. Their effects may
be calculated using ordinary perturbation theory.
For this purpose, it is sufficient to use approxi-
mate eigenfunctions of H„suitably extended to
a moving frame of reference.

Brodsky and Primack' have given such wave
functions. It should be pointed out that they are
solutions of a Hamiltonian which does not include
the last term of Eq. (1) (the Breit interaction).
However, for our purposes such wave functions
are accurate enough. Ignoring the nuclear-spin

Copyright 1970 by
The American Physical Society



VOLUME 24, NUMBER 2 PHYSI CA I. RKVIK%' I, KTTKRS 12 JANUARY 1970

dependence of the wave function, we find that

d K A ~ K K~p
(2m)', 1+2(m'~M)-

x yrf(K)e (2)

(p'/2m, + V)y, (r) = ay, (r), (3)

where m, is the reduced mass. N is a normal-
ization constant given by

may be chosen as the unperturbed wave function,
where f(K) is used to make an arbitrary packet.
y(r) is the center-of-mass wave function. The
large components are p, (r)y, and the small com-
ponents are

(2m-[M/(m+M)](V-e)j 'g, py, (r)y„
where g, is a two-component electron spinor and

y, (r) is a normalized solution of

Corrections to E(l. (5) are of order (Zn)' and
higher.

In addition to ~, and ~, there are correc-
tions which arise from radiative processes. The
lowest-order radiative corrections are of two
types: (a) self-energy corrections which arise
from modifications of the bound-electron propa-
gator; (b) vacuum-polarization corrections which
stem from modifications of the proton propaga-
tor. A general formalism for handling such radi-
ative level shifts has been developed by Brodsky
and Erickson. ' For the case of a constant mag-
netic field, we obtain a contribution of zero (to
the desired accuracy) from the vacuum-polariza-
tion term. This differs from the result obtained
by Lieb' many years ago. '

As discussed in Ref. 7 the contributions to
(A) above are numerous. However, to order
n(zu)'m/M we only need to consider

and

1
xxe~

Z'ne - Z' ~ r(r Hxx, )
4lvIr y

If the atom is placed in a small constant mag-
netic field, perturbations arise which contribute
to the Zeeman interaction of the electron. %e
have interactions

~(M) =—
(
—

) (()TrH —,~'y,, ~ E).

In other words, only the expectation value of the
Pauli interaction is needed.

The P,o, H term in ~(M) receives contribu-
tions from coupling large-large and small-small
components of the wave function. Evaluating this
term to order a(zo.)'m/M we obtain

a H 1--'Zn' 1---
where

x, =X+ [M/(m +M)]r

The contributions of both of these terms to the
energy are obtained through first-order pertur-
bation theory, using E(l. (2) as the unperturbed
wave function. The results are expressed in
terms of powers of Zn and m/M.

We obtain (retaining only spin-dependent terms)

The y, E term in bE(M) also gives a contribu-
tion since it couples large and small components
of the wave function. The small components are
modified by the introduction of a magnetic field,
and this modification is needed in calculating the
effect of radiative corrections. ' For this term
we obtain a correction

g H 'Za 1

Adding E(ls. (7) and (8) we obtain

x 1-3(zo) 1- +
2 3 '

x 1+-'(Zo.)' 1-

(5) If we now combine Eels. (5) and (9) and factor
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out 1+a/2v we obtain

1+—(v ~ H) 1-3(Zo.)' 1— +, -3Z(Zn)', +—(Zn)' 1-2' 3PPg I. 2 sz A 2 2'
2m 2~ ' m m' ' m' 4~ (10)

Extraneous terms, all of which are of higher order than the expressions considered in this paper,
have been introduced in Eq. (10) in order to conveniently factor the free-electron g factor.

The free-electron g factor is known to order n . There are, of course, binding corrections to high-
er-order radiative corrections. However, we expect that these binding corrections will bring in addi-
tional powers of (Zn) . Therefore inclusion of higher-order radiative corrections may be accomplished
by replacing the 1+a/2m in Eq. (10) by g, /2 where g, denotes the free-electron g factor. The elec-
tron g factor in the ground state (1$) is therefore

3 2 2

g(1$) =g, I --'(Za)' 1- +, ——'Z(Za)', +—(Za)' 1-m' 4~ M

Equation (11) is not in agreement with Eq. (14) of Ref 2. Instead of the term (n/4w)(Zn)'(I-2m/M),
Hegstrom has (a/12@)(Za)'(I —2m/M) +5„where 5, = —(26/15m)a(Zo)' is the result of Ref. 6. 'o

The first difference between our results is clearly algebraic. To check this we have done a Foldy-
Wouthuysen expansion of Hegstrom's Hamiltonian in the limit as M tends to infinity. For $ states we
find

2

(12)

as opposed to that given in Ref. 2 [Eq. (7)]. We may replace o, pp H by —,'p'o, ~ H to obtain

X, = — o'~ H 1- 2
— g, h o'~ ~ H 1- (13)

The difference between K, as given by Eq. (13)
and K, of Eq. (7) in Hegstrom's article is

hX, = (e/2m-)a, (h)v~. H(p /3m').

Hence

(bX, ) = -(e/2m)(cr, ~ H)[o.(Za)'/6~]. (14)

If this correction term is added to the n(Zn)'/
12m term of Hegstrom, the number n(Za)'/4w
emerges, as already obtained in Eq. (11) through
the present approach.

The second difference concerns the addition of
5,. It would appear that adding -(26/15')n(Zo)'
to the anomalous moment n/2z leads to double
counting. The reason is that this correction
term is supposedly the complete a(Zn)' correc-
tion due to radiative shifts [i.e., the sum of
terms of type (A) and (B) as discussed above].
However, introduction into the formalism of the
Pauli interaction [as contained in Eq. (3) of Ref.
2] with the u/2m coefficient already includes all
significant contributions of the type (A) previous-
ly referred to. Therefore electron self-energy
corrections should not be counted again. Vacu-
um-polarization contributions should be included
and may be incorporated in 5,. However, as
discussed in footnote 8, these should be zero.
Therefore the complete result, including lowest-

order radiative corrections, is given by Eq. (11)
above.

The conclusions of this paper [e.g. , Eq. (11)]
are presently in agreement with Hegstrom's
most recent results. " Experiments done so far
are in agreement with Eq. (11). Hughes and Rob-
inson have measured the ratio of the g factor in
hydrogen to that in deuterium. They obtain

g(H)/g(D) =1+(7.2a 3.0) x 10

g(H)/g(D) =1+9.7x10 9-1.6 x10

-1.V x1.0 (15)

The second, third, and fourth numbers in this
expression are, respectively, the terms of or-
der n'm/M, n'(m/M)', and n'm/M.

The experiments mentioned above are not pre-
cise enough to measure the smallest terms of
Eq. (15) and therefore they do not check the radi-
ative corrections given in this paper. Qne way
of measuring the coefficient of the n(Za)' term

Larson, Valberg, and Ramsey have also mea-
sured the same ratio and have obtained

g(H)/g(D) =1+(9.4+ 1.4) x10

From Eq. (11) we find the theoretical value to be
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in Eq. (11) would be to mea, sure the ratio of g
factors for two atoms with different Z. For ex-
ample a measurement of the hydrogen-to-helium
(singly ionized) ratio to one part in 10' would de-
termine the coefficient to about 10%.
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Energy spectra of electrons ejected from autoionization states in helium excited by
electron impact have been measured at bombarding energies from 65 to 250 eV as a
function of the angle to the primary electron beam.

The height of peaks of the energy spectra due to optically forbidden transitions from
the ground state compared with those due to optically allowed transitions increases as
the impact energy is reduced; this trend was most marked for the triplet-state (2s2pI)3P
excitation.

Certain autoionizing states of helium have been
observed by optical absorption, ' by electron en-
ergy-loss measurements of forward-scattered
electrons, ' ' and by energy-spectra measure-
ments of ejected electrons from states excited
by ion impact. " In this paper we show part of

the observations on these states by the measure-
ments of the energy spectra of electrons ejected
after bombardment with electrons as a function
of the impact energy as well as of the ejected
angle. ' Mehlhorn' has previously observed auto-
ionization of helium by this electron-impact


