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We consider a model for the pion electromagnetic form factor based on duality and
Regge asymptotic behavior for strong interactions. We find that E„(t), - t and that
vector dominance is expressed through second-order poles as t approaches the masses
of vector mesons.

A(t, s) = -P[V(t, s) V(t, u)], — (2)

where —pV(t, s) is a symmetric function of t, s,

We consider a model for the pion electromag-
netic form factor that incorporates both the con-
straints imposed by current algebra and the dual-
ity property of strong interactions. We have not
yet achieved a completely well-defined model,
but the results seem to be sufficiently interest-
ing, both from a theoretical and an experimental
point of view, to justify a preliminary report.

Our point of view, adopted as a working hypoth-
esis and not necessarily a fundamental principle,
is that the photon interacts with hadrons through
pair creation as in field theory. The form factor
arises from the strong final-state interactions.
Thus the isoveetor pion form factor is obtained
through the Feynman graphs of Fig. 1(a), which
give a T-matrix element proportional to

i f, (2q+p)„A(t, q')
(2~)'J (0'+2q p, )(q' —2q 0,)'

where p&
= (p, —p, ) &, and A (t, s) is the invariant

amplitude for vm scattering in the I= 1 state with
squared c.m. energy t and squared four-momen-
tum transfer s.' We ignore particles other than

pions in the intermediate state but shall comment
on their effects later. The integral in (1) is pro-
portional to P&, and so is gauge invariant. The
I = 1 m~ amplitude can be written in the form

and represents the amplitude for m'm scatter-
ing in the t channel. The form factor is then
found to be

G(t) =,fd'q (1+, )(2~)' p'

(4)

If, in the same spirit, we take pion Compton
scattering to be given by the Feynman graphs of
Fig. 1(b), we will insure that our form factor is
the residue of a fixed J-plane pole in the Comp-
ton amplitude, in accordance with current alge-
bra. '

We now assume that V(t, s) can be separated in-
to a part V&(t, s) containing only narrow reso-
nances with Regge asymptotic behavior domin-
ated by the p trajectory, plus a part V~(t, s) con-
taining the Pomeranchukon but no resonances. '
Correspondingly, the form factor is decomposed
as

We shall only calculate the final term in the fol-
lowing.

Writing V~(t, s) as a sum of s poles, we im-
mediately obtain Gz(t) as a sum of triangular
graphs, which can be easily ealeulated. They
can be resummed to yield an expression involv-
ing V~(t, s) itself:

G (t) =(p/41/'t)f, dx g(t, x)V~(t, —x),

FIG. 1. (a) Feynman graphs for pion electromagnetic
form factor. (b) Feynman graphs for pion Compton
scattering.
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Since V(t, s) = V(s, t), we could also expand it
in a series of t poles. Indeed, it may appear
that one would thus be led directly to vector
dominance. However, this cannot be done, for
the Feynman graph corresponding to a t pole is
a divergent self-energy graph. Only the sum of
such graphs gives a finite number. As we see
later, this circumstance leads to vector dom-
inance by second-order instead of simple poles.

Under the assumption that all Regge trajec-
tories are linear, the most general V~(t, s) is a
linear combination of Veneziano terms. "We
take only a single term:

V (t, s) = F(l-n, )I'(1-n )/I"(1-a, -n ), (10)

where n, = n, +n't is the p f' trajec-tory. As
pointed out by Lovelace, ' this satisfies the Adler
self-consistency condition V~(p, ', p, ') = 0, if
a(p') = —,'. Together with n(m~') =1, this com-
pletely determines the trajectory:

n. =-'--'V'/(m, '- V') = 2,

n'= [2(m~' —p')] ' = 1 (GeV/c)

Through elastic unitarity, the coupling constant
P is related to the 7Tw width F~ of the p meson by

P = 16m(6F /m ) = 16m, (12)

where, in the last step, we have used the experi-
mental value 6F&/mz --1, from hadronic experi-
ments. Thus there are no unknown parameters
in Gp(t)

We now describe some properties of G~(t) with-
out proof. It is a meromorphic function in the
cut I; plane with a logarithmic cut from 4 p,

' to ~.
The branch eut is most evident from (9) in the
limit p-0. From (6) we see that a factor I'(1
—n, ), which has simple poles at n„= 1, 2, ~ ~ ~,
can be factored out of the integral The remain-
ing integral also has simple poles at the same
positions. Consequently G~(t) has a second-or-
der pole plus a simple pole at a, =n (n = 1, 2, ~ ).
The original simple t poles of V~(t, s) become
second-order poles in G~(t), because the simple
poles couple to the photon through divergent self-
energy loops. The residue at the two 1owest
second-order poles are real and can be read off
from the following formulas:

G (t) = (P/48m )(1-a )[n'(t —m ')] ', (13)

where y =x/4 p,
' and T= t/—4 p', g being the pion

mass. As p, -0, g(t, x) approaches a simple lim-
it:

g(t, x) — = [~ -x/t] in[1-t/x] —1.

x (-n't)"o '[1+O(lna't) '].
Finally, at t=O for small p, we have

G (0) = -p'n' P/8m,

G ' (0) = (n'P/8m) ln(n' p, ')
(16)

The asymptotic behavior (15) is actually inde-
pendent of the details of the Veneziano model. It
only depends on the fact that p is the leading tra-
jectory, and that high-energy fixed-angle scatter-
ing (t -~, s —-~) is exponentially damped.
Since the p leads all known trajectories except
the Pomeranchukon, the asymptotic behavior
t ' ' remains valid even if other particles than
pions are admitted in the intermediate state. '

The Pomeranchukon contribution G~ (t) can only
be a subject of speculation. We assume that it is
qualitatively like G~(t) except that it has no
poles. By analogy with (15) it should approach a
negative constant asymptotically, and we can
conjecture that it cancels the "contact term" 1 in
(5). However, at t= 0 it should be -O(n' g ), and
the contact term furnishes the correct normali-
zation. To make these conjectures more defi-
nite, we can try to incorporate the Pomeranchuk-
on into the Veneziano model using, for example,
a model suggested by Huang. ' In that model the
ratio e of I'-wv to p-wm effective coupling is of
order n'Fz - 10%. The Pomeranchukon then rep-
resents a small correction except at asymptotic
energies. A crude calculation gives a behavior
G~ (t) ——(P/8m2) C = -(2/m) C, where C - e F(e) - 1.
Thus, at least in such a model the cancellation
of the contact term by the Pomeranchukon is not
impossible.

Adopting the picture suggested above, we can
make some definite predictions for F,(t). For
this purpose we neglect the pion mass wherever
possible and set n, =-,', n'=1 (GeV/c) ', and
P= 16m.

(1) The asymptotic form factor is given by

F (t) =-» "'(-n't) '"
'IT

ft)

x [1+O(inn't) ']. (18)

G,(t),=, (P/48~') (2-n, )

x (3ao-1)[n'(t —m p'2)]

where m~"=m~'+(n') ', m~' being the mass of
the vector meson p'. There are also additive
simple poles at the same positions. Asymptoti-
cally, both for spacelike and timelike t, we
find

G, (t) = -(P/8~') I (l-n, )
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= ]..4x ]0 (19)

(3) The p meson occurs in the form factor as
a second-order pole plus a simple pole. Near
t=m~', the second-order pole dominates, and
is given by (13) in the zero-width approximation.
Putting the width simply by replacing rn& by
mz-il'&/2, we obtain, near / =m&2,

IF,(t) I2 = [Gno. "] '[ (i—m ')'
+ (mp I"p)']

(20)

Hence

IF„(m,') I'=(G~) '(~'m, I,)-', (21)

which is extremely sensitive to m&I'z, whose
value should ideally be taken from mm resonance
scattering. Using m~1'~ = 0.1 (MeV)', we obtain

IF,(m~') I'=30, which lies within experimental
bounds. 9 From a practical point of view, (20)
can hardly be distinguished from a Breit-Wigner
formula. If we simulate it with an equivalent
Breit-Wigner formula of the same height and

width, we obtain an effective form factor near
t=m 2

p e

IF,ff (t) I' = C[(f—mq')'+ (mal", qt)'] ', (22)

C=(Gv) '(o. 'mpi'~) '(m~1', gf)', (23)

I (21/2 1)1/21 = 0 G5Z' (24)

This may explain why e'e colliding-beam ex-
periments apparently give a smaller p width. In
fact, taking I'~ = 140 MeV, we find I",ff

= 91 MeV,
which is consistent with experiments.

We wish to make the following comments:

Since F„(t) is negative for large spacelike f
(t ——~), and F,(0) = 1, it must have a zero at
some spacelike t; but we cannot locate it be-
fore the Pomeranchukon contribution is better
known.

(2) The rms radius of the pion diverges log-
arithmically as p. -0. Taking only the most di-
vergent term, and neglecting the Pomeranchukon
contribution, we obtain from (17)

r, , -=[GF, ' (0)]"'= [12o.' In(n' p') '] "'

(1) Our value for r„ is about 50% greater than
recently quoted experiments. " We do not regard
this as a serious defect since we expect the Pom-
eranchukon to contribute for small values of t
and preliminary estimates indicate this will re-
duce r, . In any event the success of Eq. (19) is
that it yields the correct order of magnitude.

(2) The complications due to spin for the nu-
cleon form factor are severe but it appears that
our model predicts that these form factors be-
have asymptotically like f // 3/'-t ' for o+0)

We will give details in a separate publica-
tion.

(3) The appearance of double poles is charac-
teristic of our model for the electromagnetic in-
teraction. Double poles appear in the Compton
amplitude also and we have not fully resolved
all questions about them. We will return to this
question in the future but feel that our treatment
in Eqs. (19) and (20) is worth reporting.
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tigation.
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