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We derive a unitarity upper bound on the absorptive part 4(s, t) of the elastic-scatter-
ing amplitude in the physical region. In the diffraction peak region the bound on A(s, t )/
A(s, 0) is a function only of the parameter o', 0, (-t)/4vro, 1. Assuming the diffraction
scattering to be purely absorptive and spin independent we find the pp, Pp, and 7t. p data
to lie a little below the theoretical upper bound. Further the experimental curve of X(t)/'
X(0) vs 4tX(0)/o-~1, where X(t) = do/dt, seems —"universal. "

(1) Introduction. —One of the important features of high-energy elastic scattering is the presence of
the diffraction peak in the low-momentum-transfer region. We wish to investigate how far one can un-
derstand this feature in terms of restrictions coming from direct-channel unitarity alone without re-
course to any specific model. We begin by recalling the unitarity upper bound on "diffraction peak
width" obtained by Ma, cDowell and Martin. ' They prove that

d—lnA(s, t)dt ', , 9 4m a, &

where A(s, t) is the absorptive part of the elastic-scattering amplitude for two spinless particles at
c.m. energy fs and momentum transfer squared t, k being the c.m. momentum. The v„, and o„are,
respectively, the total and elastic cross sections. This bound is remarkably close to the observed ex-
perimental values when a comparison is made by assuming that the unpolarized cross sections in the
diffraction-peak region are spin independent and purely absorptive. The MacDowell-Martin result
leads us to hope that the differential cross section in the diffraction peak region might be understood
similarly in terms of a unitarity upper bound on A(s, t) in the physical region.

The main obstacle to obtaining good bounds on A(s, t) in the physical region so far has been the oscil-
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plG. 1. Gomparison between the theoretical upper bound on the curve of (A(&,&)/&(s, 0)]' vs (-t)o,o, '/4'~&
~d the experimental curve of ~(t)/~(0) vs 4(-&)K(0)o,&. Note that the quantities plotted in the theoretical and ex-
perimental curves are equal for purely absorptive, spin-independent scattering. %'e use the data of K. J. Foley et
al. , Phys. Rev. Letters 11, 603 (1963), on n+p scattering at lab momenta 6.8, 8.8, 10.8, and 12.8 GeV/c and w p
scattering at lab momenta 7.0, 8.9, 10.8, and 13.0 GeV/c. The pp and pp data in the same energy range also fall
on the same experimental curve as the 7I. p data but have not been shown to avoid overcrowding.
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latory behavior as a function of t of the Legendre polynomials P&(eos9) occurring in the partial-wave
expansion for m & 0&0. Martin, for this reason, has worked with nonoscillatory functions which ma-
jorize ~P&(cos9)~ and he thereby obtained an upper bound on A(s, t) in terms of o„,. This procedure
entails loss of information. We have therefore tackled the oscillation problem frontally. Our proce-
dure yields an improved upper bound on A(s, t) in terms of o„,which we shall report elsewhere.

Here we report an upper bound on A(s, t) which is in terms of o«, and o,&
and which is of practical

interest. This upper bound is a function only of the parameter p given by

p = o„,'(-t)/4vo, i

in the diffraction-peak region. It has a particularly simple form for small values of p given by

A(st) p 3 p2 21 p'
1— + — + for 2 5 +~ p +~ 0

A(s, 0) 9 8 9 320 9

(1.2)

We give explicit formulas and numerical values for the upper bound up to p=8. 42. We compare our
theoretical upper bound with the experimental data on PP, PP, n'P, and w P scattering in the diffrac-
tion peak region by assuming that the unpolarized differential cross sections are (i) spin independent
and (ii) purely absorptive. We then have

X(t)/X(0) = [A(s, t)/A (s, 0)]'

where X(t)—:do/dt, and

4X(0)(-t)/o, i = a«, '(-t)/4mo,
&

=p.

We can therefore compare, under these assumptions, the experimental curve of X(t)/X(0) vs 4(-t)
xX(0)/o, &

with our theoretical upper bound for the curve of [A(s, t)/A(s, 0)]2 vs p. The experimental
points lie only slightly below our theoretical curve, differing by less than 10% for p in the range 0 to
3 and by less than 25% for p in the range 3 to 5. We further notice that the experimental curve seems
to be "universal" (Fig. 1).

We are intrigued by this universality feature exhibited by the experimental data and by its close
agreement with our theoretical upper bound. It may be that the variable p has some deeper signifi-
cance.

(2) Upper-bound theorem. —We give below the exact upper-bound theorem on A(s, t) which, on evalua-
tion in the diffraction-peak region, gives (1.3) and other results.

Theorem. —Let (0'/4m)(oto, '/o „)& 1 and m & 9 &0 where 9 is the scattering angle [t = -2k'(I —cos9)].
Then

A (s, t) Q„(2l + 1)Pi(cos 9)[Pi(cos 9)-A]
A(s, 0) ' Q, (2l+ l)[Pi(cos9)—A] (2-1)

where A (1&A &0) is determined by

k2o„,2 lg„(2l + l)[Pq(cos9) —A]].2

4wo„g, (2l + 1)[P,(cos 9)-A]' '

Here Q, stands for summation over those I values which satisfy

P,(cos9) o- A.

(2.2)

(2 3)

The proof of this theorem will be indicated later. Here we shall only make a few comments on it.
(1) We only need the physical-region partial-wave expansion of A(s, t) given by

v"s
A (s, t ) =—Q (2l + 1)Ima q(s)P &(cos9)

k &=o
(2.4)

(2.5)

and the positivity of the imaginary parts of the partial-wave amplitudes fi.e. , lmaq(s) & 0] for proving
the theorem.

(2) The upper bound U(s, t) given above is achieved for the following set of Ima, (s)'s:
Ima~" ~(s) = n[P~(cos9)-A]9(Pz(cos9)-A),
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where e &0 and 8(x) is the step function of x and where IY and A are chosen so as to reproduce the
known value of 0'tot and Og)p i.e. ,

0„,(s) = (4vn/k')Q, (21+1)[PI(cos8)—A],

o,) (s) = (4wn'/k') Qy(2l + 1)[PI(cos8)—A]2.

(2.6)

(2.7)

Obviously A given by (2.6) and (2.7) is the same as that given by (2.2). Further the positivity of n also
follows from (2.6) and (2.7).

(3) Evaluation of the upper bound in the diffraction-peak region. —We are interested in studying the
upper bound U(s, t) in the diffraction-peak region. For 7I&8&0, PI(cos8) is an oscillating function of l
with maxima points / = L; given by

8 —82

BE
—PI(cos8) = 0, l, PI(cos9) &0.

z.; Bl —l = Ll'

Further let

A, =maxI[PII(cos9)].

Case (1).—Consider first the case with A satisfying

(3.1)

1~A )Ap. (3.2)
The summations Q„ in (2.1) and (2.2) now run over L & l & 0 where L is the largest integer such that
Pz(cos8) & A. We then have

L I
U(s, t) = g (2l+ 1)PI(cos9)[P,(cos9)-A]/ Q (2l+ 1)[PI(cos8)-A],

l =p l=p

provided that A is given by the equation

k2o L
= f Q (2l+ 1)[PI(cos9)-A]] / Q (2l+1)[PI(cos9)-A] .

4~0'el l = p l=p

The summation over l in Eqs. (3.3) and (3.4) can be done exactly by using

Q (2l+ 1)PI(eos8) =PI ii'(eos9)+PI (eos9),
l=p

Q (2l+1)[PI(eos9)]'= (I.+1)[PI(cos9)]'+sin'8[PI '(cos8)]'. (3.5)

(3.3)

(3.4)

l=p

(3.6)

(3.7)

The condition 1-A &A.p is seen to be equivalent to

(3 6)2.5& p& 0.
Using (3.6) and (3.7) and the expansion of Bessel functions in powers of q we obtain the simple result
(1.3) quoted earlier in the introduction.

Case (2).—We now consider the remaining ease, i.e. , A, -A &0, which is equivalent to considering
value of p larger than 2.5. There is more than one piece in the l summation. Following an exactly
similar procedure we obtain

A(s, t) ~.( p) +Z[& '~2(vI)-n ~.(n;)],(s, 0 z p I
8 wo

(3.9)

where

In the diffraction-peak region s is large and 0=0 so that the I egendre polynomials can be approximat-
ed by Bessel functions and we obtain from (3.3), (3.4), and (3.5)

A(s, t)
A, '0 - U(s, t) = ~.(n)+(n'/p)~. (n),A(s, 0 g~ ~

where g = (2L+ 1)sin28, p = (-t)0„,'/4nv, q, and p is to be determined by the equation

p = [n~.(n)]'/([~, (n)]'-2~. (n)~. (n)]

O=g&p &pep, &g&p, &'- ~

0 0 1 1 2 2

~.(nI) =~.(t I) =~,(t .)

(3.10)

(3.11)
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Table I. Upper bounds on the imaginary part A(s, t) in the diffraction-peak region as a function of p=( t-)(o, , /
47t.o~)) .

0
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Upper bound on A(s, t)/A(s, 0)

1.000
0.945
0.893
0.846
0.795
0.749
0.710
0.677
0.652

4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.42

Upper bound on A(s, t)/A(s, 0)

0.630
0.610
0.593
0.578
0.566
0.554
0.543
0.533
0.523

for allic0 and the p; and pz are determined by

(Q;[tt ~,(v;)-n ~.(g;)]}'
P g; ([I;~,();)]'-[q;~,(n;)]'}-2~.() .)IQ;[t ~.(t ~) nl'~,-(n~)]}' (3.12)

The numerical values of the upper bound for 0 ~ p- 8.42 are given in Table I, since we felt that there
is not much practical use for the upper bound for larger p values.

(4) Proof. —We now prove the theorem given in the Sec. (2) by "direct-subtraction" method. I.et

A (s, t) =—Q (2l+1) Imaz o (s)P&(cos8),
1=0

where the Imaz'0)(s) are given by (2.5)-(2.7). Consider

(4.1)

6, =——[A (s, e)-A(')(s, t) ]= Q(2l + 1) [Ima~-Ima~(o) ]Pz(cos8) +Q (2l + 1)Ima&P&(cos8),
S Ll V

(4, 2)

where g„stands for summation over those l values which satisfy A P~(cos8). Eliminating P~(cos8)
in the first sum on the right-hand side of (4.2) in favor of Imaz ) by using (2.5), we obtain

1
Q (2l + 1)[(Imaq)'-(Imaq ' )'- (Imaq-Imaq" )']+A+ (2l + 1)(Imaq-Ima q'")2'

+Q (2l + 1)ima, P~(cos8). (4.3)

Now (2.6) and (2. t) lead to

Q (2l +1)lmaq ——Q(2l +1)imaq(o) (4.4)

Q (2l+1)(Reaq)'+ Q (2l+l)(imaz)'=Q(2l+1)(lmaz ")'.
l= 0 1=0 V

Using (4.4) and (4.5) in (4.3) we obtain

1 OQ

( Q(2l+1)(Reaq)'+ Q (2l+1)(lmaz-Imaz('))'-2og(2l +1)ima~[P~(cos8)-A]} 4 0.
2Q g-0 1=0 V

(4 5)

(4.6)

We next note that the right-hand side of (2.2) varies from 1 to ~ as A goes from one to zero and fur-
ther that the summation in the numerator of (2.2) becomes divergent for A negative. Therefore, for
k'a~, s/4wo„~i one can always find an A in the interval (0, 1) to solve Eq. (2.2). This completes the proof

(5) Concluding remarks. —(i) The upper bound given in Sec. (2) is the best possible one as long as
only the knowledge of 0„„0,&, and positivity of Imaz is used. Use of the additional information Imaz
&1 does not lead to any improvement in the diffraction-peak region because Ima~ ' &1 is automatical-
ly satisfied for the experimental values of o„,and o,&.

(ij) Our method also allows us to establish a lower bound on A(s, t) in terms of o, , and v„. We find
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that in the range 0 «p & 8.42 the lower bound on A(s, t)/A(s, 0) is always negative and less in magni-
tude than the upper bound U(s, t) varying monotonically from -0.162 to -0.138 as p varies from 0 to
11.5. Therefore in the range 0 «p «8.42 the upper bound on [A(s, t)/A(s, 0)]' is simply [U(s, t)]'.

Further details and other upper and lower bounds in the physical and unphysical regions will be re-
ported in a later detailed paper. '
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The "quark tracks" observed by McCusker and co-workers in cloud chambers can be
explained by making reasonable assumptions about two processes: fluctuations in the
number of droplets in a cloud-chamber track, and the relativistic rise of the ionization.
However, before a firm conclusion can be drawn, more experimental data on the drop-
count distribution of a large sample of tracks in the experiment are needed.

McCusker and collaborators have recently per-
formed an ingenious experiment to search for
quarks in the cores of large air showers. "
Among 5 X10 tracks in delayed-expansion cloud
chambers, they have found five with about one-
half the ionization of comparison tracks in the
same or near-by pictures; they interpret these
as being due to quarks with charge &. The quark
flux computed on the basis of this experiment is
in mild disagreement with the result of searches
in terrestrial matter. '4 This disagreement can
be explained away because the chemical behavior
of quarks is not known. Nevertheless it has led
us to re-examine the evidence presented by the
Sydney group.

In estimating the probability of a few deviant
cases in a large sample, one is faced with the
difficulty that the result is very sensitive to the
value of the assumed standard deviation of the
parameter measured. Only an experimental de-
termination of the frequency of tracks as a func-
tion of drop count will permit a definitive dis-
tinction between a subsidiary peak at low ioniza-
tion and the low-ionization tail of a broad peak.
Meanwhile, consideration of what is known at
present about drop-count statistics and the in-
crease of ionization beyond the minimum sug-
gests that the observed effect is not necessarily
due to particles of reduced charge.

The increase in ionization beyond the minimum
is well established', the corresponding increase

in drop count in a cloud chamber has been ob-
served in many gases'; in argon it reaches 20%%up

at y = 20-40 and 40% at y = 100-400 (y is the ener-
gy in units of the rest energy). Shower particles
rarely appear at minimum ionization in a cloud
chamber. ' In an air shower of 10' charged par-
ticles at sea level, typical' electron energies
near the core are 0.5 GeV (y = 1000); the muons
have average energy exceeding 5 GeV (y = 50).
Under lead the electron energies are lower, but
it is safe even here to assume that the average
ionization is at least 1.2&I„where I, is the min-
imum ionization. To be conservative, we shall
assume for the following estimates that particles
with energies corresponding to ionization be-
tween I, and 1.3 XI, are present, and that the
number of particles is uniformly distributed over
this range. Then the average ionization of the
comparison tracks is 1.15 XI, and the expected
ionization of a charge —, quark at its minimum is
(4/9)/1. 15 =0.39 times the average of the com-
parison tracks.

The fluctuation in the number, Nd, of droplets
in cloud-chamber tracks of particles of fixed
charge and velocity is not given by (Nd)', but is
considerably larger. ' " Three processes are
involved: the primary ionization by the fast par-
ticle; the secondary ionization by ejected elec-
trons; and the formation of photographable drops
on diffused ions. The primary ionization is in-
deed Poissonian, but the mean number involved"
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