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PLASMA-WAVE INSTABILITY IN NARROW-GAP SEMICONDUCTORS
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In narrow-gap semiconductors, the energy of conduction-electron plasma oscillations
can be made equal to the band gap by doping. %hen such a crystal is pumped with an
electron beam or light wave, stimulated emission of plasma waves takes place. Esti-
mates of growth rate suggest that, in Pb& ~Sn~Se and Pb~ ~Sn~Te alloys, collisional
losses can be overcome and the plasma waves excited to high amplitude.

In the past few years, small-band-gap semi-
conductors and semimetals have been studied
with increasing vigor. The properties of mate-
rials such as InSb, PbTe, Bi, Pb, Sn Te,
Pb, Sn Se, Hg, Cd Te, and the Bi-Sb alloys
have been investigated in detail, ' and several de-
vices whose operation depends upon the small-
band-gap property have been demonstrated. ' A

particularly interesting subclass of these materi-
als is that of the alloys, such as Pb, Sn Se and

Pb, ~Sn Te, in which a direct energy gap can be
continuously varied, through zero, in a crystal
with simple band structure. ' 2 This feature
makes it possible, with appropriate choice of
composition, to adjust the band gap (EG) to coin-
cide with other important frequencies in the
crystal. This paper will discuss some of the im-
plications of choosing EG equal to the plasma fre-
quency (&u~) of the conduction electrons in such a
material. ' In particular, we will consider the be-
havior of plasma waves when the crystal is
pumped by light or an electron beam to excite
electrons from the valence to the conduction
bands. It will be shown that, under these circum-
stances, the plasma waves can become unstable
and rapidly grow in amplitude. Pumping inverts
the band-edge transition. Stimulated emission of
plasma waves then occurs, if EG= ~~, because
the Coulomb field of the wave has a matrix ele-
ment which induces interband transitions. This
process is a strong one, even at modest pumping
levels. It appears possible, in both the Pb, Sn Se
and Pb, Sn Te systems, to overcome the colli-
sional damping of the plasma waves and excite
them to high amplitude.

To discuss the instability, we consider a sim-
ple band structure such as that of Pb, Sn Se.
A band-edge point of the Pb, Sn Se system is
illustrated in Fig. 1(a). The minima of the con-
duction band are directly above the maxima of
the valence band at the L points of the Brillouin
zone. ' For concreteness, we consider a crystal
with n-type doping, and assume the plasma fre-
quency of the conduction electrons about equal to

the energy gap. In a cubic crystal the plasma
frequency is independent of propagation direction
and is given by the formula
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where n„- is the electron density in the ith con-
duction-band minimum, and a; =O'E;/Bkbk is the
reciprocal effective-mass tensor for that mini-
mum. n, =Q;(no, ), and 1/m*= —,Q;(o.;). In all
these formulas, the masses and effective-mass
tensors are evaluated at the Fermi surface.
Band nonparabolicity can cause these values to
differ by sizable factors from the corresponding
quantities at the band-edge points.

Let us now imagine that, with an electron beam
or light wave, we excite electrons from the val-
ence to the conduction bands. The excited parti-
cles thermalize, via electron-electron interac-
tions, in about 3x10 "sec. If this time is ap-
preciably shorter than the recombination time
the distribution shown in Fig. 1(b) results Usu-.
ally, this condition is easily satisfied. When EG
= v~, the recombination time is shortened by
spontaneous emission of plasmons. For the ex-
ample discussed later it becomes about 2x10
sec, which is still considerably longer than the

FIG. 1. Band structure of Pb& ~Sn~Se alloys
{a}before and {b}after beam pumping.
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thermalization time. Thus, we will use the velocity distribution of Fig. 1(b) in our calculations. It
should be emphasized that the hole densities we are envisaging here are relatively small-perhaps 1%
of the electron density. Typical values are n, = 10"-10"/cm', f (hole density) = 10"-10"/cm'.

To investigate the behavior of plasma waves in this medium, we consider the longitudinal, wave-
veetor-dependent, dielectric function of the electron gas. In the random-phase approximation, this
function is given by the expression'
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where E „(p) is the energy of an electron with crystal momentum p in the band p, and f„(p) is the occu-
pation number of this state. The frequencies of the collective modes are determined by the condition
e(k, (u) =0.

For the plasma illustrated in Fig. 1(b), three types of matrix elements contribute to e(k, cu): inter-
band terms involving deep-lying valence electrons [transitions such as those indicated by arrow A in
Fig. 1(b)], intraband terms which give rise to the plasma contribution to e(k, v), and, finally, inter-
band terms in which electrons near the band-edge point in the conduction band fall into the small hole
pocket at the top of the valence band [arrow 8 of Fig. 1(b)]. These terms yield the expression (at ze-
ro temperature)
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where the d'P integration extends over the hole pockets in the valence band. E,(p) and E„(p) are the
energies of conduction- and valence-band states. For simplicity, we have ignored the (usually small)
frequency dependence of e,. It has also been assumed that k is small compared with the Fermi- Thom-
as wave vector of the electron gas; so there is no dispersion or Landau damping of the plasma wave.
The interband matrix elements can easily be evaluated with k-p perturbation theory. One finds

l(p, ~ le'"'Ip-k, c&l'= (k-~. ,)'/(~E )', (4)

where m~, is the interband matrix element of the momentum operator at the band-edge point. Within
the two-band model, the combination f„~«/m'EG is essentially the effective-mass tensor, O'E/skulk,
at the band edge. When Eq. (4) is substituted into Eq. (3) the last term remains finite in the limit k =0.
The interband matrix element of the operator e'"' ' goes linearly to zero as k-0, but this effect is
balanced by the fact that the potential of a plasma wave varies as k in the small-k limit.

With these points in mind, Eq. (3) can be rewritten in the form
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is a weighted, joint density of states for conduction- to valence-band transitions. The subscript i re-
fers to the ith valence-band maximum. Equation (5) implies that, if ~ is a, solution of the equation
e(k, cu) =0, &u* is also a root Thus, t.he condition for instability in this collisionless model is that &u be
complex.

The transcendental equation, e(k, &u) =0, is a complicated one, even when k =0. However, it can be
approximately solved in the limiting cases where the imaginary part of &u(= ~, +i~,) is either large or
small compared with the range of the E integration in Eq. (5). This range is twice the Fermi energy
of the hole pockets [25E~ of Fig. 1(b)] if k =0, and increases with k. If &u, &5E~, Eq. (5) is evaluated
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by omitting the E dependence of the denominators. The resulting expression for e(k, ~) is

where m F ~* is the effective mass at the Fermi
surface [Eq. (1)]and m ~E

* the mass at the band-
edge point. When v~ =EG, the roots of Eq. (I)
are

Qn the other hand, when ~, 5E~, the imaginary
part of Eq. (5) is

2 2
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The real part of Eq. (5) indicates that, at low

pumping levels (p/n, «l), v, '= ~~. Thus

(u, =~-,' m(4''/e, )cu~p(u) -E ~).

Equations (8) and (10) give the limiting behavior
of the growth rate. In intermediate cases we
will assume that +, is equal to the smaller of the
values predicted by these formulas. Detailed
calculations indicate that this approximation is
often quite good, and that in the worst cases it
overestimates &u, by about 30%%u&.

As an example, we consider the alloy
Pb, „Sn, »Se discussed in Ref. 2. With ~, =10"/
em 4L)p E G' 0.03 eV. Using the two -band
model, ' one estimates that m z s*/m BE

*= 4. If p
=10"jcm', Eq. (8) yields the va, lue ~v, ~= 5x10"
sec . A similar figure is obtained from Eq.
(10) if (u~ —Z G is equal to 5Z~/2. Thus l(u, I=5
x10" sec ' is a reasonable value for the growth
rate. For instability actually to occur, this rate
must exceed eollisional losses which, for plas-
ma waves, are determined by I/2r, where T is
the electron collision time. The net growth rate
is then ~,-l/B. . In our exa,mple, instability oc-
curs if T&10 "sec. Measurements of optical
absorptione in PbTe crystals with 10"electrons/
cm give free-carrier absorption coefficients in
the range 2-10 cm '. The corresponding high-
frequency collision times are T =10 "-(2x10 ")
sec. To the author's knowledge, no such experi-
ments have been performed in Pb, Sn Se or
Pb, Sn Te alloys, but if the PbTe results can
be extrapolated to these systems, the instability
will be excited at pumping levels below p =10"j
CIQ ~

As we have indicated, the population inversion
which drives the instability is produced by pump-

ing the crystal with an electron beam or light
wave. The pump generates hot electrons and
holes, which subsequently thermalize to the dis-
tribution of Fig. 1(b). During the thermalization
process, plasma waves are excited in the elec-
tron gas. This excitation, however, should be
clearly distinguished from the instability itself.
The former is an incoherent process, in which
energy is deposited in all possible collective
modes of the system, and no particular plasma
wave is excited to high amplitude. Qn the other
hand, the instability is coherent and drives a
small fraction of the collective modes. Under
most conditions, these will be modes of low k,
since the function p(E) decreases as k increases.
Preliminary calculations suggest that the unsta-
ble modes can be confined to the range k ~10'
cm . It is even possible that, in a finite geome-
try, one could use depolarizing fields to split a
few, very low k modes from the continuum and
selectively excite these. Among such modes are
electric dipole oseillations of the whole plasma
in the crystal. These modes radiate strongly.
Thus, it is conceivable that the instability could
be used as a source of infrared radiation.

The author wishes to thank H. Q. Pollak for a
number of stimulating discussions of the equa-
tion e (k, m) = 0.
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Experimental data on the Hall effect and the resistivity anomaly are analyzed using the
two-current conduction model; information is obtained on the Fermi surfaces of Ni.

Recent dilute-alloy resistivity experiments' '
have demonstrated the correctness of Mott's par-
allel-current model for conduction in ferromag-
netic metals, particularly Ni; thermoelectric-
power' and thermal- conductivity measurements
give results consistent with the resistivity data.
This Letter outlines an interpretation of galvano-
magnetic data in Ni alloys, using the same mod-
el together with information on impurity scatter-
ing derived from the resistivity experiments.

For present purposes, the model" can be sum-
marized as follows: At low temperatures spin-
up (majority direction) and spin-down electrons
conduct in parallel with resistivities p

' and p ',
respectively. At high temperatures a phonon
scattering term p,~ is added for each direction
of spin, and magnon "spin mixing, "character-
ized by p, mingles the two currents. From
experimental resistivity data's ratios n = p e/p e

characteristic of each impurity have been de-
rived.

Now, for the ordinary Hall effect, we can de-
fine a Hall coefficient for each direction of spin
A, . At low temperatures the well-known two-
current formula gives the overall Hall coeffi-
cient'

' = p'fR '/(p ')'+ R '/(p ')'1 (&)

so that for n» 1, RL z' =R .' At higher temper-
atures,
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FIG. 1. The ordinary Hall coefficient Ro as a func-
tion of concentration for Ni: Fe alloys (Ref. 9) .

for n =1 at low temperature)

R„,=(R,'+R ')/4. (2)

Using these expressions, we can analyze the data
of Huguenin and Rivier' on dilute Ni:Fe, Fig. 1,
knowing n =20 for Fe in Ni. ' The initial steep
fall in R' (4.2'K) as a function of Fe concentration
C is a parasitic effect due to the existence of
other impurities in the Ni; as Fe is added, the
o. values for the samples change from +=1, R'
=RHre (residual-impurity dominated) at C =0 to
n = 20, R'=R o (Fe dominated) for C &0.5%.
From values above this concentration it can be
seen that Rz T', hence R ', varies linearly with
C, from a value of about zero for C =0. From
this value, the high-temperature data, and Eq. (3)
we can now estimate R '= —2. 4&& l0 'c m'/A sec,
so the spin-down Fermi surface is dominantly


