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INTERPRETATION OF EXPERIMENTS ON FEEDBACK CONTROL
OF A “DRIFT-TYPE” INSTABILITY

B. E. Keen
United Kingdom Atomic Energy Authority Research Group, Culham Laboratory, Abingdon, Berkshire, England
(Received 4 December 1969)

Previous experimental results on the feedback stabilization of a “drift-type” instabili-
ty are interpreted in terms of a nonlinear theory of the Van der Pol type. This theory
predicts a variation of the instability amplitude and its frequency as a function of the
gain and the phase angle in the feedback loop. Comparison between these predictions
and the experimental results shows remarkably good agreement.

Recently there have been a number of papers'™
which have shown feedback suppression of vari-
ous “drift-type” plasma instabilities. In particu-
lar, in the work of Ref. 3, some success has
been achieved in the interpretation of the results
by the use of a “feedback” source term included
in a linearized theory. However, in order to al-
low for the “positive” feedback case where the
instability signal is amplified, a nonlinear theory
must be employed which limits the final signal
level to a finite value. In the last few years
there has been considerable interest in the non-
linear mechanisms which determine the satura-
tion level of plasma instabilities. In fact, it has
been shown that the Van der Pol type of equation*
gives a good description of various kinds of non-
linear phenomena occuring in some plasma in-
stabilities. These phenomena include mode lock-
ing and mode competition,*® periodic pulling,”
frequency entrainment or “synchronization,”®
and “asynchronous quenching” effects.® Further,
it has been shown theoretically by Stix,° when
considering finite-amplitude collisional drift-
wave oscillations, that a solution may be obtained
“which saturates in a manner similar to the
Van der Pol solutions.” Consequently, as it has
been shown that this type of differential equation
gives a good description of finite-amplitude col-

|

lisional drift waves, the phenomenological ap-
proach has been adopted, in which the Van der
Pol equation is taken to describe the density os-
cillations in the plasma. The equation in its
simplest form for the unperturbed case is

d*n,/dt?—(a—Bn2)dn,/dt+ wln, =0, (1)

where », is the density perturbation, w, is the
drift wave frequency, « is the linear growth rate
(a/w, < 1), and B is a nonlinear saturation coef-
ficient which limits the final amplitude of the un-
perturbed oscillation. This final amplitude (q,)
in the unperturbed case is given by

a,=(4a/30)\2. (2)

Now consider a signal gn,(7) which is fed back
into the system where g is an absolute gain in
density perturbations and 7 represents a delay
time (here w,7=¢, the phase shift). Then the
equation is given by ‘

d?n

dn
ﬁ—(a—ﬂn12)2?+ won, +gwn, (1) =0. (3)

This equation is a simple example of a differ-
ence-differential equation,*’ and can be rear-
ranged in the form

d?n,/dt?+ wn, = (@*=w, I, + (@=Bn,)dn, /dt —gw,*n,(T) = 2 H. (4)

If a solution of the form n, =a sinwt? is assumed, it can be shown that Eq. (4) can be brought into the

form

d’n,/dt*+ w'n, =F(a(t), w) coswt+f(a(t), w) sinwt+harmonics+ +« -, (5)

If the calculation is limited to the fundamental frequency w the solution in the first approximation is

a)= 50 [ Fa, ©)ag 0--L [ ate), we.

(6)
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For the transient condition the first part of Eq.
(6) gives

da/dt =F(a, w)/2w, (7)
and for the stationary state one has
F(a,w)=0, f(a,w)=0. (8)

Therefore, if one calculates the coefficients of
cosw! and sinw? from the expression for ) H in
Eq. (4), the following conditions are obtained for
the stationary state:

ali-a’=-g(w,2/aw)a,? sing, (9)
w?=w(1+g cosy). (10)

Equation (9) shows that as the gain g is increased
from g =0 the amplitude (a) will increase or de-
crease according to the sign of sing. Optimum
supression is achieved with

sing=-1 (i.e., ®=-90° or+270°); (11)

then suppression occurs when g =a/w, (since w
=w, at ¢ =-90°).

The apparatus was the same as that employed
in Ref. 2, and further experiments have been
performed to test the above theory. Summariz-
ing, the plasma used was a hollow cathode arc
discharge running in argon, with an electron
temperature ~5.0 eV, a peak density ~10*® cm "~
and an inverse scale length n, "'/%n,/87 =0.70
+0.05 cm ™! in an axial magnetic field of 1 kG.
The instability was predominantly an m =+1 in-
stability with an axial wavelength X larger than
the apparatus (A > 200 c¢m), and under these con-
ditions its frequency was 7.0 kHz. It was identi-
fied as a collisional-type drift wave.'?

In these experiments, ion density perturbations
were detected on an ion-biased probe, and a
signal proportional to these perturbations was
fed back via a wideband amplifier with variable
gain, a phase shifter (variable over 450°), and a
power amplifier onto a plate in the plasma. This
plate was in the same axial plane as the detecting
probe and could be moved radially across the
plasma. As in Ref. 3, minimum gain was re-
quired for suppression when the plate was situat-
ed at the radius (=1.1 ¢m) corresponding to max-
imum instability amplitude. However, experi-
ments were usually performed with the plate
further out of the plasma (»=1.6-2.0 cm), so that
it caused less disturbance to the density profile.
The effect was observed on a further ion-biased
probe which could be moved axially and radially,
and the output was displayed on a spectrum anal-
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yzer.

The phase angle ¢ in the feedback loop was
varied until a minimum was obtained in the in-
stability level, and then the amplitude a was
measured as a function of the gain G in the wide-
band amplifier. Equation (9) predicts that the
square of the signal level (a®) should fall linearly
as a function of the absolute gain g (or relative
gain G) in the feedback loop. This variation is
shown in Fig. 1, where (a/a,)? is plotted against
the increasing gain G in the amplifier; this is
shown for the suppressor plate set at two differ-
ent radii »=1.6+0.1 cm, and »=2.0+0.1 cm.

It is seen that a good linear relationship is obeyed.

Further experiments were performed with the
plate kept at a radius »=1.8+0.1 cm. The gain
G was left set at its value for suppression (G
=25.2) and in this case the phase angle ¢ was
varied through 360°, and the relative amplitude
a/a, measured. This is shown plotted in Fig. 2(a)
as (a/a,)’ versus phase angle ¢. It is seen that
optimum suppression is achieved when ¢ =-90°,
or +270° as predicted by Eq. (11). Figure 2(b)
shows (a/a,)* plotted versus sing, and a good
linear relationship is seen to be obeyed as pre-
dicted by Eq. (9). Other gain values of G =12.6
and 7.9 are shown plotted in both Figs. 2(a) and
2(b). The absolute gain g of the system was ob-
tained with the aid of Eq. (10), since, with the
gain set at G =25.2 (for optimum suppression),
theory gives g=0/w, <« 1. S0 if w-w,=Aw,
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FIG. 1. The square of the reduced amplidute (a/ az(,)2
plotted versus amplifier gain G for the conditions when
the suppressor plate is set at a radius 7 such that
(1) »=2.0+0.1 cm and (2) ¥ =1.6 +0.1 cm.
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FIG. 2. A plot of the square of the reduced amplitude
(a/ay)? against (a) phase angle ¢ and (b) sine.

Eq. (10) shows that 2Aw/w,=g cos¢. The fre-
quency shift Aw was measured as a function of
cos and this is shown plotted in Fig. 3(a); a
good linear relationship was obtained. The slope
of this line is proportional to g =a/w,=0.12
+0.02. This allows the absolute gain g to be cal-
ibrated in terms of the amplifier gain G, and
thus g=9G (y=4.5%x1072). Consequently, the
resulting theoretical variation of (a/a,)* as a
function of phase angle ¢ for each gain value
was calculated using Eq. (9), and this variation
is shown as the continuous lines in Fig. 2(a).
Finally, a further check on the theory was made
by measuring directly the linear growth rate o
and comparing its value with the result obtained
indirectly from g =o/w,=0.12+0.02. This was
effected by using a tone-burst generator in the
return loop, which gated the feedback signal at
periodic intervals. The resulting instability
signal was measured, and the rise and decay
times were analyzed as in Fig. 3(b), to obtain a
value for @. This resulted in a value from the
rise-time data of &, =(0.13+0.02)w,, and from
the decay-time data of & ,;=(0.15+0.03)w,, which
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FIG. 3. (a) The change in the instability frequency
Aw (kHz) plotted versus the cosine of the phase angle
(cos¢). (b) The logarithm of the reduced amplitude
In(a/ag) plotted against the number of periods of the
wave for (i) the rise time and (ii) the decay time of
the instability.

shows remarkably good agreement with the value
obtained above from theoretical considerations.

Concluding, it is seen that by adopting the phe-
nomenological approach to the problem, in which
a nonlinear equation of the Van der Pol type is
used to explain the instability saturation condi-
tions in a plasma, relationships can be obtained
between the amplitude e and frequency shift Aw
as a function of gain g and phase shift ¢ in the
feedback loop. The resulting measurements show
the predicted variations and a consistent value
for the growth rate « is obtained within experi-
mental error. Therefore, remarkably good
agreement between theory and experiment is
achieved.
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MAGNETOPHONON RESONANCES IN ACOUSTOELECTRIC GAIN IN -InSb *

Victor Dolat and Ralph Brayf
Physics Department, Purdue University, Lafayette, Indiana 47907
(Received 22 December 1969)

" Novel resonances in the acoustoelectric gain have been observed in pure z~InSb at lon-
gitudinal magnetic fields corresponding to the well-known Gurevich-Firsov magnetopho-
non resonances. The magnetoacoustoelectric resonances were obtained at 77 and at
4.2°K, with acoustic phonons internally amplified from the thermal background. The
resonant peaks in the gain are attributed to resonant cooling of hot carriers by the reso-
nant enhancement of optical-phonon induced transitions between Landau levels.

We report here a new magnetoacoustoelectric
(MAE) resonant phenomenon, consisting of the
introduction of the magnetophonon resonances
into the acoustoelectric interaction in #-InSb.
Magnetophonon resonances, first proposed by
Gurevich and Firsov,! are well known in the
magnetoresistance.? They correspond to the res-
onant inelastic scattering of electrons between
Landau levels which are separated by just the
longitudinal-optical-phonon energy kw,. In the
parabolic-band approximation, the resonances
occur at values of magnetic field B determined
by the condition

nBe /m* = w,, (1)

where »n is an integer and m* is the electron ef-
fective mass. The novel® MAE resonances con-
sist of strong positive peaks in the acoustoelec-
tric gain at the resonant values of B. A compar-
ison with the magnetoresistance (MR) variation
shows that the MAE resonances are not merely
a secondary manifestation of the MR resonances.
The present work was restricted to the longi-
tudinal magnetic field configuration with B along
the [110] length of the sample, parallel to both
the electron-drift velocity vy, and the phonon-
propagation direction. The acoustic flux is pro-
duced internally, by acoustoelectric amplification
of phonons from the thermal equilibrium back-
ground.®™® For sufficient net gain in pure n-InSb,
this requires application of current pulses mak-

262

ing v, much greater than the piezoelectrically
active shear-wave velocity vs =2.3%10° cm/sec.
The amplification is selective,*® producing a
beam of phonons in a narrow cone along the [110]
direction, with a narrow band of frequencies
centered around 1.7 GHz. The latter is the theo-
retical” frequency of maximum gain (w,,), at
T7°K, for n-InSb with carrier concentration N
~4x10"/cm® and electron mobility u~6Xx10°
cm?/V sec. The important parameter ¢! (phonon
wave vector Xelectron mean free path) is ~9.
Both measurement and analysis of the MAE
are greatly simplified when the gain is achieved
with very constant current pulses,*® which main-
tain the current-dependent gain factor v,/v -1
constant. The amplified acoustic flux is detected
through the delayed increase in the voltage
across the sample, as illustrated by the record-
ed pulses in Fig. 1(a). During the delay of ~4
usec, the acoustic flux propagating towards the
anode grows exponentially by many orders of
magnitude. Eventually it becomes detectable in
the electrical resistance, producing the voltage
rise AV,,, which is determined by the rate of
loss of electron drift momentum to the amplified
phonon beam. The acoustoelectric signal AV,
is given by a®/Nev,, where & is the amplified
acoustic energy density integrated over the
length of the sample, a=ay,(vy/vs—1) is the
acoustoelectric power gain, and o, is a material
and magnetic-field—dependent interaction coef-



