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The Q-machine "edge oscillation" is identified as a Kelvin-Helmholtz instability by a
comparison of theory with experiment. Specifically, measurements of frequency and of
radial variation in wave phase and amplitude agree with numerical integrations of the
radial wave equation, including finite parallel wavelength. The computations show that
the instability is caused principally by velocity shear.

The "edge oscillation"" of Q-machine plasmas
has been conjectured to be a transverse Kelvin-
Helmholtz instability" because of the strong
shear in the equilibrium E x B rotation that oc-
curs at the edge of these devices. The pioneer-
ing attempt to substantiate this conjecture is the
recent work of Kent, Jen, and Chen, ' who showed
that the frequency and the radial dependence of
wave intensity agreed well with a rough theoreti-
cal model. T'.&e present work reports important
extensions to both the theoretical model and the
experimental measurements that support, in de-
tail, the model of a Kelvin-Helmholtz instability.

From a general point of view, any confined
plasma in which nonambipolar processes lead to
E &B velocities that exceed the average diamag-
netic velocity may be susceptible to a velocity-
shear instability (whose nonlinear state is a, con-
vective cell). 4 Indeed, co'nvective cells occur in
multipoles. ' A Q-machine plasma, which is not
strictly confined but where the radial electric
field is, to some degree, under the control of
the experimenter, ' provides an opportunity to
study this instability and compare it with theory.

In this work we compare measurements of the

edge oscillation with theoretical eigenfunctions
and frequencies obtained from numerical integra-
tion of the complete radial wave equation, using
measured values for the equilibrium radial elec-
tric field and density profiles, and also includ-
ing the effects of finite parallel wavelength and
ion collisional viscosity. Furthermore, by de-
leting terms in the radial wave equation, we can
turn off certain physical processes (e.g. , centri. —

fugal force) and assess their contribution to the
growth rate.

The theoretical model is a cylindrical, low-P,
isothermal plasma column immersed in an axial-
ly uniform magnetic field B. The equilibrium
profiles of plasma density n and radial electric
field E are described by the parameters
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respectively.
The linearized radial wave equation for a nor-

mal mode with a g (r) exp(im9+ i&et) dependence
is

+, V' $+ &u'r' g+2i-d d+ 1—m' »dn .Znr' (m&uD+ ~—m~z)(&u —m&uz)
J' Ct'F a' Cu —m VE -lr

~ I . 2 2+ zv - 4na'r'(e-m &uz -m zr )V~4 r ( = 0, (2)

where
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, kT I 2 2kT I
Pl~ V~ M

and m is the azimuthal mode number. The de-
pendent variable

c rent. cp
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!(3) is the radial displacement of a guiding center;
y is the perturbed potential.

(4) The numerical integration of Eq. (2) was sim-
plified by neglecting the last term, which de-
scribes the effects of ion eolliSional viscosity.
The boundary conditions were: (1) g-r ' as r
-0, and (2) !P!decreases monotonically as r -~.
These conditions determined the complex eigen-
value resulting from the last term, under the as-
sumption that the eigenfunction varies rapidly
compared with the equilibrium. '
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The fact that in most experiments the velocity
shear layer is thin compared with the azimuthal
wavelengths leads, theoretically, to an import-
ant observation: The radial displacement g is
approximately constant throughout the velocity
shear layer. This can be seen either from nu-
merical calculations or by extending the argu-
ments of Drazin and Howard on the hydrodynamic
Kelvin-Helmholtz instability' to the plasma case.

FIG. l. (a) The plasma equilibrium is given by the
radial variations of & and ~D. The quantity a; shows
the size of the ion Larmor radius. The dashed line
shows the measured oscillation frequency for m = 2.
(b) Comparison of measured rms amplitudes of density
and potential fluctuations (dashed lines) with theoreti-
cal eigenfunctions (solid lines) for the nz = 2 mode with

X~~
=330 cm. The theoretical results have been normal-

ized so that the potential fluctuation agrees with the
experimental value at x=1.6 cm. In these measure-
ments, the small admixture of m = 1 has been filtered
out. (c) Comparison of measured radial phase varia-
tion of the potential and density fluctuations with theo-
retical pahses (smooth curves). The open circles are
the experimental density phases; the closed circles
are the experimental potential phases. The potential
phases were set equal to zero at &=2.0 cm. The ver-
tical lines represent the experimental uncertainty; the
horizontal lines show the length of the probe (0.4 mm).

The potential and density perturbations (as de-
rived from the electron-fluid equations) are

y = (B/c) (r/m) ((u —m(u~)g,

n 1dn (m(uD+ iZ) ((u-m(U~)
n nch rn&uD(u-mrs' —iz)

f

These relations are useful in identifying the
Kelvin-Helmholtz instability experimentally.
Specifically, (1) if g is constant, Eq. (5) pre-
dicts a large change in the phase of y where
Re(cu) =mezz, and (2) if Z is small and g is con-
stant, Eq. (6) predicts little radial variation in
the phase of n. In the regions free of velocity
shear, the phase between y and n depends on the
direction of the radial electric field in the shear
layer (because this determines ~), and the am-
plitudes are often such that ~n/n~ «1ecp/kT~.

The experiments were performed in a cesium
plasma in the Princeton Q-3 device" in double-
ended operation (both end plates hot). The col-
umn length was 110 cm, and the maximum den-
sity was 4&10 cm '. The aperture limiter set
the diameter of the main plasma column at 4 cm.
The end-plate temperature of 2200'K produced
ion sheaths resulting in small density gradients
and gave no drift waves in the main plasma col-
umn for B &5.5 kG. Figure 1(a) shows the steady-
state density and potential profiles at B= 2.8 ko
in terms of &UD and &uz Isee Eq. (1)j. The m =2
mode was dominant under these conditions, al-
though a small admixture of m = 1 (20/0 in power)
was present. Measurements of the parallel wave-
length gave X

~~

= 330 cm, with a 30/0 uncertainty.
Figures 1(b) and 1(c) compare theoretical and

experimental determinations of the radial depen-
dence of the amplitudes and phases of the poten-
tial and density perturbations. The agreement
shows that the oscillation is indeed described by
Eqs. (2), (5), and (6). In particular, Eq. (6)
shows that the radial variation of phase of the
density perturbation n results from a nonzero
parallel wave number. The agreement between
theory and experiment here gives added confi-
dence to the parallel wavelength measurement.
Theoretically, the frequency also depends sig-
nificantly on the parallel wave number (see Fig.
2), and again there is agreement. Figure 2 does
show that any attempt to accurately predict the
frequency of the edge oscillation requires a good
knowledge of the parallel wave number.

Next we turn to the question of what physical
effect is responsible for the instability. Is it ve-
locity shear, centrifugal force, or electron dis-
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Finally, we should remind the reader that the
theoretical work is based on the finite-Larmor-
radius fluid equations, which require that the
scale sizes be large compared with the ion gyro-
radius and the frequency small compared with
the ion gyrofrequency (&u„= 2.0 &&10' sec ' for
these measurements). Since neither approxima, —

tion is well satisfied, the agreement between
theory and experiment is surprisingly good.

The authors are grateful to Dr. R. W. Motley
for valuable discussions and to Dr. H. W. Hendel
and Dr. C. Oberman for reading the manuscript.
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Table I. The effect of various physical processes on
the instability frequency.

Processes ~ max +~ max

VS
VS+ CF
VS+ ED

VS+ CF+ ED
VS+ CF+ ED+ FLR

0.64
0.51
0.72
0.57
0.58

0.19
0.24
0.24
0.285
0.28

'VS stands for velocity shear, CR for centrifugal
force, ED for electron dissipation, and FLR for finite
Larmor radius. See the text for details.

b In all cases, A.
~~

=330 cm and the effect of ion-colli-
sional viscosity was less than 5%. The uncertainty in
the determination of the eigenvalue is +0.01.

FIG. 2. Dependence of the frequency on parallel
wavelength. The experimental oscillation frequency is
shown at the measured parallel wavelength. The col-
umn length is indicated by I..

sipation (which leads to drift instability)? By
numerically integrating Ecj. (2) with certain terms
deleted, a theoretical answer to this question is
provided. In particular, deleting the third term
removes the centrifugal instability (CF in Table
I), deleting ~D in the expression for V' [Eq. (3)]
removes ion finite —Larmor-radius (FLH) stabil-
ization, and deleting co~ in the fourth term re-
moves the destabilizing portion of the electron
dissipation (ED). In all of these integrations the
first two terms of Ecl. (2), which represent ve.—

locity shear (VS) were present. Table I gives
the eigenfrequencies found by the integrations.
It is evident that velocity shear makes the largest
contribution to the growth rate; so we may call
the edge oscillation a Kelvin-Helmholtz instabil-
ity. This confirms the conclusion of Kent, Jen,
and Chen. '
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