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scattering. We expect a similar conclusion to
hold whenever the magnetic-impurity scattering
has an appreciable energy dependence within
the range of 23 7. Any comparison between ex-
periment and theory, although the latter may in-
voke a different effective relaxation time than
(1), suffers therefore from the considerable
complication that the magnitude of the mutual in-
terference between the various scattering mech-
anisms would have to be determined from the
Boltzmann equation, in order to assess what
part of the measured total resistivity is due to
magnetic impurities considered separately and
what part is due to interference.
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By a perturbation-theoretic calculation, we find that vertex corrections make an im-
portant contribution to the renormalized spin-fluctuation temperature in dilute alloys,

in the limit of strong local enhancement.

There has been a considerable amount of inter-
est in locally enhanced spin fluctuations in near-
ly magnetic dilute alloys. Qualitative descrip-
tions of this phenomenon have appeared that base
the discussion on a random-phase—approximation
(RPA) calculation of the dynamic susceptibility
of the inhomogeneous system.! Attempts to treat
this problem more rigorously have appeared,®®
because the RPA breaks down when the local en-
hancement is very strong. In these theories, one
obtains a self-consistent renormalized one-elec-

tron propagator by including self-energy graphs
known to be important in the region of strong lo-
cal enhancement. But vertex corrections have
not been included in these studies. In this note
we point out that in the limit of strong local en-
hancement, vertex corrections to the 7' =0 static
susceptibility x are equally or more important
(in a sense defined below) than self-energy cor-
rections. We feel that inclusion of vertex cor-
rections in the theory may remove a number of
difficulties with recent theories that have been
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noted.?

We show the importance of vertex corrections
by studying the dependence of diagrams that con-
tain one, two, and three internal local paramag-
non propagators on the local enhancement param-
eter

K2 =1lim[1-Ix;,. "f(w)]

w—=0

where I is the strength of the interaction between
electrons in the impurity cell, and xloCHF(w) is
the local susceptibility of the single band of
Bloch electrons. As the Hartree-Fock (HF) cri-
terion for moment formation is approached by in-
creasing I, then K,>~0. We show that the terms
containing one, two, and three local paramagnon
lines contribute leading terms of order InK,?,
(InK?)?, and K, 2 to the renormalized spin-fluc-
tuation temperature

T =Eglim[1-I%;, ./ (w)].
w—>0

In this expression, X;,. (w) is a renormalized,
irreducible* particle-hole bubble, to be discussed
below. In each order we have examined, vertex
corrections are comparable to or larger in mag-
nitude than self-energy corrections, when K,?
<« 1. Thus, vertex corrections must be included
in the theory to obtain a proper description of the
local spin-fluctuation theory, contrary to what
was hoped.® We explore only the perturbation-
theoretic calculation discussed above. We do not
address ourselves to the problem of including
vertex corrections in the theory in a complete,
self-consistent fashion. We have attempted to
sum the perturbation series. It appears difficult
to sum the series in a meaningful way, as we
shall see. More sophisticated methods might be
needed to deal with this question.®

We study the transverse spin susceptibility x
of a nonmagnetic host containing a nearly mag-
netic impurity. Exchange enhancement in the
host is ignored. A general formula for x may be
obtained by solving a set of coupled Bethe-Sal-
peter equations:

X(k=0,k=0)=%(=0,k=0)
+ ¥ (k=0,7=0)%(r=0,k=0),
Xr=0,k=0)=%(=0,k=0)
+X¥ (r=0,7=0)IX(r=0,k=0). (1)
The symbol X(k2=0,7=0) describes the total mo-

ment (k=0 Fourier component) induced in the
system by a magnetic field applied locally to the
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impurity cell. The remaining quantities are de-
fined in a similar fashion, and the superscript ¢
refers to an irreducible particle-hole propaga-
tor. For x one then obtains

X=X(k=0,k=0)=%(k=0,k=0)

IX¥ (k=0,7=0)
+ =7 .
1-Ix'(r=0,r=0)

2)

We refer below to the quantity ¥’ (# =0,7=0) by
the symbol X;,.’. Equation (2) is quite general.
In the RPA it reduces to the expression® ¥ = ¥pos
+IXhost2/(1—IXhost)-

We will direct our discussion to the properties
of iloc’ . The divergences we encounter will also
appear in the other irreducible quantities in Eq.
(2), but with different coefficients. It is the na-
ture of the divergences that are of interest here
since, as we shall see, we cannot sum the re-
sulting series in a simple way. We also consider
only the absolute zero of temperature. Recall
that in the theory of uniformly enhanced sys-
tems,® higher-order paramagnon corrections
lead to negligible changes in the 7 =0 suscepti-
bility. In the local-enhancement problem, we
find divergent contributions to x at 7=0, as K2
- 0.

To compute iloc", in principle we need to sum
the infinite series of graphs obtained by dressing
the bare bubble x;,."" with all possible allowed
insertions of internal paramagnon propagators
(ladders or strings of an odd or even number of
bubbles). The only difference between the dia-
grams considered here and those considered pre-
viously’ is that we now have a local interaction,
so wave vector is not conserved at the vertices.
Thus, we can employ the formulas of Ref. 7 di-
rectly, but we replace x©(P, w) by x10. " (w)
=Z},—;~x(°)(§, w), and the electron propagator
Gk, €) by G (k,€). With these rules in
mind, we can proceed to calculate each diagram
very much as for the uniform case, but note the
effect of the above changes. We refer the reader
to the appendix of Ref. 7 for the details of the
uniform case. As an example, the diagram of
Fig. 1(b) will give, for the local problem, the
contribution x,p, to ¥;,.:

X16=T? 23 Xeven(@)GO(€)P[G(€ + w) P, 3)

where X..n(w) describes a string of an even num-
ber of bubbles:

Xeven=LX10c (@) B/ {1=[Ix10 . "Tw) . (4)
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One has four diagrams of the form of Fig. 1(a).
Two contain a string of an odd number of bubbles
[Xoaa(@)] and two have ladder insertions [x;,4(w)].
These diagrams give a contribution x,,:

1a= 272 E[XMd(w) +X1aa(@)]
T X6 rw), (5)
where
Xodd(@) = =T2x10 () /{1=[1x10 . " @)}, (6)
and
“I%x10c W)/ [1-Txy0 " F(w)]. (1)

We consider only the limit of strong local en-
hancement, where

Xlad(w)=

K2 =lim[1-Ix;,."f(w)] < 1.

w—>0

The paramagnon propagators are then strongly
peaked near w=0. Since the (unrenormalized)
one-electron propagator G°(€) is a smooth func-
tion of energy, and varies appreciably only when
€ changes by an amount the order of the band-
width, we neglect the effect of the paramagnon
energy transfer w on G°(¢), and replace G°(€ +w)
by G°(€). Equations (3) and (5) give

_I xOc F(w)

—ZTZ 1-1* xioc”F(w)]
-I%x (w) 0 4
m T?[G ©Fr 9

Only diagrams of Fig. 1(a), which describe self-
energy corrections to the single-particle propa-
gator, are retained in Hamann’s treatment® of
the renormalization of the Anderson model. It is
clear from Eq. (9) that the vertex corrections ¥,y
of Fig. 1(b), which are not included in Hamann’s
treatment, are the same order in K2 as the dia-
grams of Fig. 1(a), in the limit as K2~ 0. At
this point we see that one must consider the ver-
tex corrections to obtain a complete description
of locally enhanced systems, when K,2—0. We
proceed by employing an approximate form for
Ix;,."F(w) that will enable us to study the various
contributions as K,?~0:

Ixioe H(w)= 1-K2 +irw sgn(Im (w)). (10)

The sums over the paramagnon frequency w may
then be evaluated in the usual way. We find by
this means that as 7 -0,

Xia +Xqp = =3 InK TS [GO(e)J ). (11)

(b)

FIG. 1. The two classes of diagrams with one local
paramagnon insertion. The local paramagnon propaga-
tor is denoted by a wiggly line.

For the one-paramagnon diagrams, the presence
of the vertex correction of Fig. 1(b) changes the
coefficient of the InK? term, but the form of the
divergence does not change., One may see this by
noticing that X.yen(w) of Eq. (3) combines with one
of the X,q4(w) of Eq. (5) [after we replace G°(€ +w)
by G°(¢)] to give a nondivergent quantity when K2
-0:

Xevcn(w) + Xodd(w)
= =I2x15 (W) /(14110 H(w)]. (12)

We shall see that graphs with three paramagnon
insertions will change the nature of the diver-
gence,

In the later discussion, it will be convenient to
note that

Xlad(w)+Xeven(w):XOdd(w)~ (13)

Next we examine diagrams involving two para-
magnon insertions (Fig. 2). We first look at the
vertex corrections of Fig. 2(a) and 2(b), since
they involve G°(€) in the form [7D).G°(¢)*I?,
where all others involve T, [Go(e)]e. Moreover,
from conservation of energy considerations, the
two paramagnon propagators in Fig. 2(a) and 2(b)
involve the same frequency, while the two propa-
gators in each of the other graphs in Fig. 2 in-
volve independent frequencies. The diagrams of
Figs. 2(a) and 2(b) are drawn in detail in Ref. 7
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FIG. 2. Diagrams with two local paramagnon lines.

Part (c) contains the seven graphs in the lower three
lines.

@@©

One has

_I?
= )
xT{3[Go(e) }2

The sum over w

(14)

where we have used Eq. (12).
gives, as T~ 0,

~121InK 2[T2).G°(e)* .

These vertex corrections are not included in the
work of Hamann, and they will change the coeffi-
cient of the InK? term. It is important to note
that the dimensionless coupling constant of the
present problem, IN(0), where N(0) is the densi-
ty of states at the Fermi energy, is not small
compared with unity. Thus, the contributions

X2a and X,y to the InK,? term are comparable in
magnitude to those from the graphs with one par-
amagnon insertion.

The remaining diagrams of Fig. 2 contain both
self-energy insertions and vertex corrections.
These graphs may be computed by the methods
described above, and the nature of the divergence
as K2~ 0 from the various graphs may be isolat-

X23+X2boc (15)

D
Dy
@@@

FIG. 3. Some of the dlagrams with three local para-
magnon lines.

ed. The calculations are straightforward, and
we omit the details here. Upon employing Egs.
(12) and (13), one finds at 7=0 contributions
proportional to InK *{7Y.[G%(€) ¥} as well as
stronger divergences proportional to (InkK?)?
x{T33.[G°(€)JF}. At this point in the discussion,
it is clear that vertex corrections give contribu-
tions to Ty of equal importance to the self-ener-
gy corrections. At the same time, the difficulty
of isolating a subset of dominant graphs in each
order is evident, as one can see from the discus-
sion of the InK ? terms.

We finally move to the graphs in Fig. 3 involv-
ing three local paramagnon insertions. We sepa-
rate the diagrams of Figs. 3(a)-3(d) which involve
{72 [6%(€)1*}2 from those of Fig. 3(e) involving
775 [G°(€)P. From the graphs of Fig. 3(e), cal-
culations along the lines of those above yield cor-
rections proportional to (InkK?)?, as well as low-
er powers of InK 2

We now consider the terms in Figs. 3(a)-3(d),
which we find give contributions of order K, 2%,
in contrast to the logarithmic divergences found
in the lower orders. Inspection of these graphs
shows that twenty distinct graphs are encoun-
tered: 18 contain one ladder and two strings of
bubbles, while two involve ladders only (three
parallel, and three crossed ladders). These
graphs sum to

X3a-d= {TE[GO(€)]4}2T2[5 Z)’ xlad(w)XOdd( )Xodd(‘w —w )+ 5 2 X]ad )Xeven(w,)Xeven(‘w—("‘,)

+8 E X1ad w)Xodd(w )Xeven(

w,w’

We write this in a symbolic fashion:

Xga-q =T2 E (5 1ad X odd X odd +5 lad X even X even +8 lad X odd X even + 2 lad X lad X lad).

LUUJ
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ww'’

w-w’)+2 2’Xlad(w)XIad(w')XIad(‘w"wl)]- (16)

(17)
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Upon rearranging these terms, one finds

{-+-}=5 lad X (odd + even)X (odd + even) + 2 lad X lad X1ad—2 lad X even X even,

= X3a-d(1) + x:sa-d(z) + XBa-d(S)-

(18)
(19)

One easily sees that X,,.4 diverges like 7Y X1,4(w), i.e., like InK 2. The behavior of x,,-4*’ and

(3)

Xsa-a  is the same as that of

XSI =T? Z; [I_IXIOCHF(w)]-l[l_IXIOcI{F(w’)]—l[l_IXIOCHF(—w_w,)]—l'

w,w'’

The sums on w,w’ may be converted from a
sum over imaginary frequencies to an integral
over real frequencies in the standard manner.
Upon doing this, then using our approximate form
for Xi,. T(w) one gets

XSI =X -BKO_Zg,

where d is an integral over dimensionless quanti-
ties that converges in the absence of a frequency
cutoff in Im(x;,. " (w)).

We see that as K2~ 0, x,’, and hence the graphs
with three paramagnon insertions, diverge as
K,"2%, in contrast to the logarithmic divergences
encountered earlier. If only the self-energy cor-
rections are retained in these third-order graphs,
the divergent contributions are of order (InK,?)®
or lower. This is the basis for our earlier state-
ment that inclusion of vertex corrections in the
theory may affect the functional dependence of
T4 on I in a qualitative manner. A theory that
ignores these corrections appears to us to have
limited validity.

It is unfortunate that we have been unable to
isolate a single dominant set of graphs in each
order that may then be summed to remove those
divergences, and yield a closed expression for
T sr- One of the difficulties may be appreciated
by recalling our earlier discussion of the InK?
contribution to x; it appears that one obtains con-
tributions to the coefficient of this term from
graphs of all order in the local paramagnon prop-
agator. Since the dimensionless parameter IN(0)
of the present problem is of order unity when K
«1, the contributions to the InK,? term from
graphs second and higher order in the paramag-
non propagator are comparable in magnitude to
the terms with one paramagnon insertion. Thus,
one apparently cannot isolate the most divergent
term in K2 in each order, and discard the less
divergent terms in an attempt to sum the dia-
grams. We note that these remarks are similar
to the comments of Silverstein and Duke® con-

I cerning the validity of low-temperature theories
of the Kondo effect that are obtained by consider-
ing only the most divergent terms in each order
of perturbation theory. But one important differ-
ence between the Kondo problem (discussed with-
in the framework of the s-d Hamiltonian) and the
local enhancement problem is that in the former,
a small dimensionless interaction parameter
JN(0) exists.
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