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IP...(-mv(L /L)' e (21)

for E inside the "allowed zones, "where v is a
typical band velocity for energy E, and

27l'eS
p(E) —= L,v'n(E)e (22)

for E inside the "allowed zones, "where n(E) is
the density of states per unit length. Thus p. is
L dependent and very small in the regime L» L,
which in one dimension corresponds to ordinary
transport. The difference between one and high-
er dimensions occurs because it is only in one

-E~( at least several times the level spacing.
The level spacing is O(1/L). In the periodic
case, Jy~*(dy /dx)dx would be replaced by
k5I, I, . The range of k over which the 6~ &

would be broadened in the aperiodic case would
be 1/L, where L, is the phase-coherence length
or mean free path. For the validity of (19) and

(20), then, we require that I,«L, which is one
of the usual criteria for the validity of macro-
scopic transport theory. In the regime L„«L„
the quantity (P,~( can be expected to depend lin-
early on (L,/L)' ' (since L, is a pha. se-coherence
length"'") and to be exponentially small (since
L, is also the localization length for the ampli-
tude of the wave function). Consequently,

dimension that phase incoherence leads to local-
ization of what would be extended states in higher
dimensionality.
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DEVIATIONS FROM MATTHIESSEN'S RULE IN METALS WITH MAGNETIC IMPURITIES*
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It is shown that resonant scattering of the conduction electrons in a metal, when com-
bined with ordinary impurity scattering and phonon scattering, leads to significant devia-
tions from Matthiessen's rule for the total resistivity. The implication for the analysis
of the observed resistivity of metals with magnetic impurities is discussed.

In this note we present the results of a varia-
tional calculation of the resistivity of a metal, in
which the electrons suffer an energy-dependent
scattering from impurities in addition to ordi-
nary impurity scattering and scattering against
phonons. Such a situation occurs for example in
metals containing magnetic impurities. Experi-
mentally, the contribution of the magnetic impur-
ities to the resistivity of the metal is determined'
from the difference between the measured resis-
tivity of the impure sample and that of the pure
material. Characteristically this difference
drops from a maximum at zero temperature to

some constant value at higher temperatures, in
which case the constant term is subtracted off
as due to ordinary potential scattering. The re-
mainder is attributed to the effect of the magnet-
ic impurities via conduction-electron scattering
involving the spin of the impurity.

This simple subtraction procedure isolates the
resistivity due to the magnetic impurities alone
only if Matthiessen's rule holds, that is, only if
the sum of the individual scattering rates (i.e.,
the rates that characterize each scattering
mechanism considered separately) equals the
total scattering rate in the presence of the sev-
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eral scattering mechanisms.
Deviations from this rule are known both theo-

retically' and experimentally. ' In the present
context we are concerned with deviations that oc-
cur because the individual scattering mecha. -
nisms, when considered separately, give rise to
electron distribution functions that differ in their
dependence on energy or direction in momentum
space. We disregard, however, such deviations
as are due to the influence of the impurities on
the phonon spectrum or the electronic states of
the pure metal, since presumably these become
negligible in sufficiently dilute systems.

Several authors have derived effective energy-
dependent relaxation times for the scattering of
electrons off magnetic impurities but have, so
far, failed to account satisfactorily for the tem-
perature dependence of the resistivity attributed
to magnetic impurities. In the absence of an
adequate theory we make the simple assumption
that magnetic impurities may be treated as res-
onant scatterers at the Fermi energy p with
width I'. We can then characterize the scattering
by an energy-dependent relaxation time 7'„„(s),

1 1 I'2

+res (~) ~res (~ l )

where the constant I/r„, ' is proportional to the
concentration of magnetic impurities.

We use (I) to demonstrate how a strongly ener-
gy-dependent scattering may interfere with the
scattering due to ordinary impurities and pho-
nons to result in a pronounced nonadditivity of
the individual rates. ' The qualitative features of
the result can be expected to remain valid when-
ever the scattering off the magnetic impurities
has an appreciable energy dependence on the
scale of k, T, even if not of the form (l).

The interference effects are simply demon-
strated when only the two kinds of impurity scat-
tering are present. " The Boltzmann equation
for the electron distribution function fk in the
presence of a (unit) electric field E is then

Xg -=(Bf'/Be)v-„Ze

=-(7„,-'+ ~, ')(ef'/a~)q-„, (2)

where the electron of charge e and velocity v],
has an equilibrium distribution function f e. The
relaxation time due to ordinary impurity scatter-
ing is r; z, and Qg is defined by

fr f=(sf /s&)Ni, ~-
With the notation t=(&-p. )/kisT and y=I'/kisT, the

solution of (2) is

4i, -=-4(f)vi, &~,

(4a)

The conductivity v is in general given by

o=Z~~vV «&f'/8~)4k =ZV&V4~

With (4a) in (5), the resistivity p =o ' becomes

p/(m/ne')

where

=(~„,') '&(r, ~; p/~„, ')+(r; p) ', (6)

~( „) z r')
I+ I&-g(r')]' (sa)

With only resonant scattering we get, similarly,

C„,(t) = ~„,'(&+ t'/y')

and the resistivity

p„, =(m/ne'~„;)[I+(~'/s)(k, T/I)']-".
We define the deviation from Matthiessen's

rule as

(pimp+ pres )' (IO)

At low temperatures, T « I'/k~ (i.e., y» I), the
deviation 6 is negligible compared to p„, be-
cause itt„„ in that limit is nearly constant over
the range of kBT ((t( ~ I) and hence very similar to
the (constant) g;~z.

At high temperatures (y « I), g„,(t) is very dif-
ferent from g; &. In this limit 6 is linear in
y(= I'/kiiT) and hence dominates p„, which, ac-
cording to (9), is quadratic in y. If I' is indepen-
dent of temperature, 6 therefore decreases like
T ' for large T in contrast to the T ' behavior
of ~ r es as shown 1n F&g. l.

Significant deviations from Matthiessen's rule
persist in the presence of electron-phonon scat-
tering. This additional mechanism can be in-

g(r) = (r/») 0'(-'+ y/2ii), r' = y(l+ x)'~'. (6b)

Here (' is the trigamma function.
We wish to compare (6) with the resistivity one

obtains by assuming the validity of Matthiessen's
rule. When there is only ordinary impurity scat-
tering present, the solution of (2) has the form
(4) with (,. z(t) = 7';~&, which gives the resistivity

2
] imp =~& +e ~imp
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FIG. 1. Characteristic temperature dependence of the resistivity p,e, fzq. (9)l and the (exact) deviation from
Matthiessen's rule 4 obtained from (6), (7), (9), and (10) . The exact & is compared with the upper bound on ~ ob-
tained using (13). The values of the various parameters are shown in the figure.

eluded in the Boltzmann equation by adding

(i/e, T)g-„,v(k, k )(g-„-q-„,)

to the right-hand side of (2). We treat the electron-phonon collision operator V(k, k') according to a
scheme' which allows us to take into account the effects of band structure and the details of the phonon
spectrum. For the sake of simplicity, however, we have here assumed a spherical Fermi surface for
the electrons and a Debye spectrum for the phonons which are taken to be in equilibrium. The colli-
sion operator V(k, k') is (cf. Wilson' )

2F ~0 ~0
~+k-7!'~

~

-e~k/k T e -ek, /k~ T
(

~~( k k' ~k -k') ~( k — 7!' ~7k —k')l.

In (11)gk k is the matrix element for the scattering of an electron from k to k through the emission
or absorption of a phonon with energy cup k . We use a simplified form for the matrix element that
emphasizes its low-temperature properties, namely

fgq (' =Ac@„ /2ND,

where A is a characteristic constant of order unity and 2N, is the density of states at the Fermi sur-
face.

With the phonons included, (2) is too complicated to solve exactly. Instead, we use the upper bound'
on the resistivity p,

1 1U-'+ P V(k, k )(f/-, -f/-„, )' (PX-„Vk)-'.
2kqT

k, k k
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The trial function Up has the form Up = U(t)v p E
where the energy-dependent part is varied to get
the best upper bound.

A favorable choice of U(t) is obtained by con-
sidering the exact solutions g(t) belonging to
each of the three scattering mechanisms sepa-
rately. The separate solutions g; (t) =const and

g„, (&) ~ (1+ ('/y') suggest the variable linear
combination'

(14)

The constant c in (14) is chosen to make the
denominator of (13) independent of the variation-
al parameter P. When T;

' = v„, ' = 0, we ob-
tain essentially the exact phonon resistivity pph
from (14) and (13), the bulk of the correction to
the Bloch-Gruneisen formula [obtained with U(t)
=1] being accounted for by a (small) f' term in

(14). In agreement with Sondheimer' we find the
deviations from Matthiessen's rule due to the
combined influence of ordinary impurities and
phonons to be very small, which simply reflects
the fact that the exact solution gz„with only pho-
nons present is nearly constant over the energy
range of interest and hence similar to (; &.

When the resonant scattering is included along
with the two other scattering mechanisms, sub-
stantial deviations from Matthiessen's rule re-
sult. A typical case is shown in Fig. 2 where 4
[given by the obvious generalization of (10)],

O

ne Tres
p 4

p„» and p„,+4 have been plotted against tem-
perature. The parameters ~„,', 7; ~, I, A. , and
the Debye temperature Go are chosen to conform
with the experimental conditions for Cu:Cr. ' We
have set I'/k~ equal to the estimated Kondo tem-
perature and adjusted A to get the right room-
temperature resistivity for Cu. The values of

and v;~ reproduce the "step height" ' and
total residual resistivity. The deviation 4 peaks
around T- I'/k~ and completely dominates p„,
at high temperatures, where it falls off as T
Deviations of the same order of magnitude occur
if I', instead of being constant, decreases with

temperature. To test the efficiency of the trial
function (14) in (13), we have computed (13) in

the absence of phonon scattering and it com-
pares well with the exact result (6) as can be
seen in Fig. 1.

We can summarize the implications of the in-
terference effects for the experimental analysis
of the resistivity due to magnetic impurities as
follows: The resistivity (p„, + 6) one obtains by
subtracting p„~+p~& from the total resistivity
p differs substantially from p„, when T~ I'/ka

(Fig. 2). The combined effect of the three scat-
tering mechanisms is to cause p, +6 to fall
off over a wider range of temperature than p„,
itself does. The magnitude of the effect is big-
gest when the phonons or the ordinary impurities
dominate the scattering relative to the resonant

80 32Q K
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F&G. 2. Typical results for p, ~, and & in the case where all three scattering mechanisms are present. The pa-
rameters shown in the figure have been chosen to mimic the Cu:Cr study of Hef. 1 as discussed in the text.
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scattering. We expect a similar conclusion to
hold whenever the magnetic-impurity scattering
has an appreciable energy dependence within
the range of kBT. Any comparison between ex-
periment and theory, although the latter may in-
voke a different effective relaxation time than

(1), suffers therefore from the considerable
complication that the magnitude of the mutual in-
terference between the various scattering mech-
anisms would have to be determined from the
Boltzmann equation, in order to assess what
part of the measured total resistivity is due to
magnetic impurities considered separately and
what part is due to interference.
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REMARKS ON THE RENORMALIZATION OF LOCAL SPIN FLUCTUATIONS IN METALS
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By a perturbation-theoretic calculation, we find that vertex corrections make an im-
portant contribution to the renormalized spin-fluctuation temperature in dilute alloys,
in the limit of strong local enhancement.

There has been a considerable amount of inter-
est in locally enhanced spin fluctuations in near-
ly magnetic dilute alloys. Qualitative descrip-
tions of this phenomenon have appeared that base
the discussion on a random-phase-approximation
(RPA) calculation of the dyna. mic susceptibility
of the inhomogeneous system. ' Attempts to treat
this problem more rigorously have appeared, "
because the RPA breaks down when the local en-
hancement is very strong. In these theories, one
obtains a self-consistent renormalized one-elec-

tron propagator by including self-energy graphs
known to be important in the region of strong lo-
cal enhancement. But vertex corrections have
not been included in these studies. In this note
we point out that in the limit of strong local en-
hancement, vertex corrections to the T =-0 static
susceptibility y are equally or more important
(in a sense defined below) than self-energy cor-
rections. We feel that inclusion of vertex cor-
rections in the theory may remove a number of
difficulties with recent theories that have been
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