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The interaction parameter of moving dislocations with electrons and with phonons in
aluminum was determined from measurements of ultrasonic attenuation changes with
stress. The results indicate that the interaction with electrons is temperature indepen-
dent and that the interaction with phonons increases with increasing temperature. These
results are consistent with theoretical predictions.

In this note we report a new approach to mea-
suring, by means of ultrasonic methods, the in-
teraction of dislocations with electrons and with
phonons in so1ids. (Specitically, we study the
resistive force on a moving dislocation. ) This
method does not depend on a knowledge of the
dislocation density and of other inaccurately
known or difficult to determine features of the
dislocation network. The main difficulties in ob-
taining reliable values for this interaction are
thus eliminated. By using this method, the mag-
nitude and temperature dependence of the inter-
action parameter (hereafter called B) were ob-
tained in aluminum, in the temperature range
10'K 5 T + 250'K.

Previous attempts to measure B by ultrasonic
methods' ' required an independent determina-
tion of the dislocation density, thus involving a
large uncertainty in the result. s. Other attempts
were also made to obtain B from average dislo-
cation velocity determined in mechanical tests. ' '
A comparison of the values of 8 obtained with
those derived from previous ultrasonic experi-
ments was given by Fanti et al. ' In the present

approach, small changes in ultrasonic attenua-
tion he are measured as a function of frequency.
These changes result from the application of a
small bias stress to the specimens during the ex-
periment. From an analysis of this incremental
attenuation it is possible to extract the value of
B without knowing the dislocation density. In or-
der for this analysis to be applicable the bias
stress must be large enough to cause unpinning
of dislocations from weak pinning points, but
smaller than the stress required to generate new
dislocations. Bias stresses in this range do not
affect measurably the attenuation due to mecha-
nisms other than dislocation vibrations. The
measured 4e are, therefore, due entirely to the
unpinning of dislocations with the resulting in-
crease in the average loop length.

The analysis of the relation between 4e and B
proceeds as follows. For the extensible string
model of a vibrating dislocation, the total attenu-
ation due to dislocations is given by'

4RAGA ~ de(L, ) =
~'A ((u, '-a') + (~d)"
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where R is an orientation factor, A is the total
length of dislocations per unit volume, L, is the
dislocation loop length between pinning points,
A is the mass per unit length, C is the disloca-
tion line tension, (d is the driving frequency, ~,
= (~/L. )(C/W)"', and d =S/X.

When a distribution of loop lengths is consid-
ered, the total attenuation due to dislocations
may be written in the form

o.~ = f, a(l)lN(l)dl,

where N(l)dl is the number of dislocations whose
loop length lies between l and l+dl. The distri-
bution function can be approximated by the fol-
lowing expression:

N(l)dl =—(A/L ')e 'dl,

where L, is the average loop length. The appli-
cation of a small bias stress affects this distri-
bution by causing a slight increase 5L, in L„
and the resulting attenuation change 4az can be
expressed as follows:

gaD = (8/sL, )f a(l)lN(l)dl(6L, ) = (A/L 3)(6L,)f, a(l)l(l/L, 2)e -~df . (3)

The main feature of this expression is that the
dislocation density A and the increment 5L, of
the average loop length are outside of the inte-
gral. ' It follows that the characteristics of the
ho. ~(&u) relation are completely determined by
the quantities ru, and B. The effect of a given
bias stress on unpinning of dislocations, i.e., on
5L„may differ for different temperatures. This
does not affect the above analysis, however.

The experiments were carried out on an alum-
inum (99.99/o pure) single crystal with the waves
propagating in the [100] direction. A "dynamic"
bias stress was used in the form of a large-am-
plitude wave at a frequency of 5 or 10 MHz,
propagating in the [010] direction, i.e. , at right
angles to the "measuring" wave. The bias-wave
pulse was synchronized with the measuring-wave
pulse and the duration of the former was longer
than the time separation between consecutive
echoes of the latter. The change in ultrasonic
attenuation 4eD resulting from application of the
bias wave was recorded for different measuring-
wave frequencies. The frequency range covered
was 10 to 90 MHz at 10'K and it increased with
increasing temperature. In the temperature
range 50'K~ T & 250'K the frequency range
covered was from 10 to 315 MHz. (At the lowest
temperatures it was not possible to obtain reli-
able results for the higher frequencies because
of the large attenuation due to conduction elec-
trons. )

Typical results for 4aL) as a function of fre-
quency, obtained by the above method at several
temperatures, are shown in Fig. 1. The points
represent experimental values. In order to corn-
pare these results with the predictions of Eq. (3)
it is necessary to obtain numerical solutions of
this equation. The curves in Fig. 1 represent a
computer fit of the solutions of Eq. (3) to the ex-
perimental points, using a least-squares method.
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FIG. 1. The incremental attenuation &~D as a func-
tion of frequency for four representative temperatures.
The points represent experimental data; the continuous
curves represent computer fits of Eq. (3) to these
points.

As can be seen, the curves of 4e as a function
of frequency have a maximum which shifts to
higher frequencies as the temperature decreases.
This feature is a qualitative indication that B de-
creases as the temperature decreases. It is also
noteworthy that this maximum is not of the
thermal relaxation type. The damping parameter
B obtained from the curve-fitting procedure men-
tioned is plotted as a function of temperature in
Fig. 2. B is essentially temperature indepen-
dent from the lowest temperature explored to
about 50'K and increases with increasing tem-
perature thereafter.

Two contributions to B are considered here,
one from the interaction of dislocations with con-
duction electrons, B„ the other from interac-
tions with phonons, Bzh. Calculations by Hol-
stein" and by Kravchenko" yield an expression
for B, which is independent of temperature. The
results of previous measurements' '~ as well as
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FIG. 2. The damping parameter I3 as a function of
temperature. Open circles represent the values of J3
obtained from the curves of ~aD(~). The continuous
curve represents a computer fit of Eq. (6) to these
points.

the present results are in agreement with these
predictions. On the other hand, the calculations
of Mason" give an expression for B, which is
inversely proportional to the electrical resistiv-
ity and is thus a strongly decreasing function of
temperature, at low temperatures. The present
results are clearly not in agreement with these
predictions.

The temperature-dependent part of B, observed
above 50'K, is attributed to dislocation interac-
tions with phonons. Leibfried" derived the fol-
lowing expression for the force (per unit length)
due to thermal phonons interacting with a moving
dislocation:

K = -a (v/c)F/10.

From this, the phonon part of B, B
& h, is easily

extracted:

B „=((r/c)F/10 (5)

o is the scattering width a dislocation presents
to a phonon (assumed independent of phonon fre-
quency and wave vector), v the velocity of the
dislocation, c the velocity of sound, and e the
thermal-energy density. The total B can then be
expressed as

B=B,+(z(1/c) e/10.

The solid line through the points representing
B in Fig. 2 is a computer fit of expression (6) to
the data. In the calculation of e a Debye approx-
imation is used for the phonon distribution, and

B, and 0 are treated as fitting parameters. The
best fit is obtained with B, = 1.37&& 10 ' dyn sec/
cm', whereas the value obtained for edge dislo-
cations using Holstein's "expression for B„
with free-electron parameters for aluminum, is
1.5&& 10 ' dyn sec/cm'. )Note that this value in-
cludes a correction by a factor (2w) ' that was
left out of Holstein's formula due to a misprint,
and a, factor [(1—2v)/(1 —v)]' associated with the
dilatation at an edge dislocation; v is Poisson's
ratio taken to be 3.) With an average phonon
velocity c= 3 X 10' cm/sec, the value of o yield-
j.ng the best fj.t j.s 0 = 3.5& 10 cm. Lej.bfrjed
suggested that the scattering width should be of
the order of the Burgers' vector, which is 2.9
& 10 ' cm in aluminum.

The temperature dependence of Bzh found here
is about 3 times larger, and the numerical value
of B about two orders of magnitude smaller than
the values predicted by Mason's theory" based
on the phonon viscosity model. There is also a
qualitative difference between the present results
and those obtained on lead by Parameswaran and
Weer tman. '
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By modifying the characteristic-momentum formalism of Williams and Matthews, we
demonstrate the existence of two characteristic lengths of quite different magnitude.
The larger, analogous to the mean free path for extended states in higher dimensions,
is the distance of localization within energy bands. The smaller is that of states in the
band tails. Finaliy, a formula for the conductivity in terms of the characteristic mo-
mentum is obtained. .

Williams and Matthews have made an analysis of electronic motion in one-dimensional aperiodic po-
tentials based upon the introduction of a maximized average momentum, called the characteristic mo-
mentum. Their numerical results properly interpreted in the framework of a modified formalism con-
firm in the one-dimensional case the Mott and Cohen-Fritzsche-Ovshinsky (CFO) band model' ' for
amorphous materials. We present here the modified Williams-Matthews formalism as well as some
related mathematical results and physical ideas.

Consider a finite segment of the line, a &x &5 with 5-a =I. The potential within the segment is ape-
riodic but can be imagined as derivable from a periodic potential by a disordering process. The
Schrbdinger equation, being a real, second-order, ordinary differential equation, has to linearly in-
dependent real solutions for each energy E, g, (x) and g, (x). Choose P, (x) so that

tC', (a) =(,(5), J P, '(x)dx = I; (1)

these conditions uniquely determine g, (x). Given g, (x), P,(x) is uniquely determined by

f, (,(x)P, (x)dx =0, J, g, '(x)dx = l. (2)

Williams and Matthews point out that the solutions of the present aperiodic case which most resemble
the Bloch functions of the periodic case are those linear combinations y of g, and g, which satisfy an
extremal condition in relation to the average value of momentum (p). We choose y so that the real
part of (P) is an extremum. Without loss of generality, y can be written as

y = f, +(a+iP)P, /[1+ a'+P']'",
where x andy are real. The average value of p is then

(~);gf .(d g d) „dg (P"i -2"-)-&~&» (+a+P )~,.+a(~„+~.,)f
1+a'+P'

where
b

mq~ ——,g;dgj, i,j =1, 2.

The extremum requirement on Re(P) gives

a=0, P =1 or a=0, P = —1.
The above solutions leave us with a nonzero
imaginary part of the expectation value of a dy-
namical variable. This situation is not allowed

in quantum mechanics. Our approach to eliminat-
ing this difficulty differs from that of Williams
and Matthews. %'e restrict ourselves to those
energies for which

&.(~) = 0.(t )

holds. We have thus imposed periodic boundary
conditions on both g, and g, . It can ea,sily be


