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It is suggested that if the structure function vW2 for deep inelastic electron-proton
scattering behaves near threshold as

vW2 —(1/~)(l-1/~)i' for ~ =— 2Mv/()) 1,

then the elastic electromagnetic form factor of the proton I
&

behaves for large momen-
tum transfers as

& W')-(j/0')' '" '«r 0'-"

Recent data on inelastic electron scattering show that the structure functions of the proton depend
only on one variable ~=2Mv/Q', i.e. , on the ratio of the energy transfer to the proton v=P q/M&0
to the invariant momentum transfer Q' —= q2 & 0 i-n the region of large Q' and Mv»M', with a —= 2Mv/Q'
finite. This is true in particular for the structure function vR', which has been studied extensively at
the Stanford Linear Accelerator Center' over a broad range of energy and momentum transfers in this
kinematic region, refer~ed to as the Bjorken limit. This so-called scaling behavior of the structure
function vS', suppori:s Bjorken's prediction. '

A natural interpretation of this scaling behavior can be found in a picture of the proton as made up
out of constituents —called "partons" by Feynman-that are instantaneously free during the sudden
impulse bearing a high frequency v from the scattered electron in the Bjorken limit. The associated
physical picture is that the ~ dependence of vW, probes the longitudinal momentum distribution of the
charged partons as viewed in an infinite-momentum frame of the initial proton; specifically vW, ~ (1/
e) xf)probability that a parton scattering the electron has a fraction f) = 1/&u of the proton's momentum
P in the P-~ coordinate frame).

In this Letter we will explore what can be inferred about the elastic electromagnetic nucleon form
factors, particularly for large Q', from the parton model and its apparent successes with vW, . In

particular, we will suggest a connection between the behavior of vS', near e -1 and the rate of de-
crease of the elastic form factors for Q'-~. Our work is based on the canonical field-theoretic
formalism developed earlier' for deriving the parton model and the Bjorken limiting behavior from
any reasonable —i.e. , renormalizable in the usual sense —canonical field theory of strong interactions.
A basic ingredient in this derivation of the parton model was the assumption that there exists an asym-
ptotic region in which Q2 can be made greater than the components of momenta transverse to the di-
rection of P of all particles involved —i.e. , of the constituents of the proton.

To develop this approach and identify the partons we introduce the familar unitary U matrix which
undresses the Heisenberg fields and currents, U(t) —=(exp[-i d7Hi(7)])+ where Hi(T) is the interac-
tion Hamiltonian of the hadrons, so that for example Jv(x) = U '(t)j &(x)U(t), where J&(x) and j&(x) are
the hadronic electromagnetic current operators in the Heisenberg and interaction pictures, respec-
tively. Then if P) denotes the one-proton eigenstate with momentum P, we have

n)(n IHiIP) m)(m IHiln)(n IHi IP)
(E E, )(E E )

n m, n

n+j
-=z."'lP) ) + lt'(Zk;-P)f (kk, '''k„,)l,), ~ „),

)) =1 i=i

where Q denotes a sum over all states Im) other than P); Z, is the standard wave-function renormal-
ization constant of the proton state as required to insure (P'IP) =(UP'I UP) = ()'(P' —P). The second
form expresses the expansion in terms of a sum over numbers of constituents n (the "physical" pions,
nucleons, and antinueleons in a conventional pion-nucleon field theory; indices for other quantum
numbers are suppressed). These are the partons. The probabilities for different numbers, charges,
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momenta, , etc. are specified by the matrix elements in (1). In particular we have seen that we must
set Z, =0 so that the elastic form factor vanishes as Q'-~; hence, ' the single-physical-proton state
is a.bsent from UP).

For computing the inelastic and elastic structure functions we choose as a convenient infinite-mo-
mentum frame for the proton

P" = (P +M2/2P, 0, 0, P), q" = (Mv/P, qi, 0),

with

I q, l
' = q'+ o(1/P').

(2)

In this frame the longitudinal and transverse momenta of the constituents in the states ik, k~+,) in

(1) are defined by

kg =ggP+kg i,' kg g P=O.

The momentum-conserving delta function fixes
n

'1)~ + i = 1-Q 'qg ,'k~ i, i = —Q k; i.

As established in the analysis above Eq. (78) in Paper II, the structure functions ~ and vW jn the
Bjorken limit can be written as a sum of contributions from each term fp in (1), of the form

n

(vW )„'=A, ,' — ll d'kidqi8(1-+&I) 5 r1, ——' Ilfp( ~ ~ ~ 71' ~ ~ kg ) I', (5
~ =1

where all longitudinal momenta are along the P direction, i.e. , 0& gz & 1; A., is the charge on the ath
constituent (viz. m', p., P) in the particular state f~, and the spin average over constituents' states is
assumed in writing (5). In pa.rticular we note that the behavior of f~ when g, = 1/~ -1 and all other r1 i
are within (1-1/u&) of zero determines the thresholdbehavior of (vW, )~ near ~ =1. Recall that in ap-
proaching the threshold we must still satisfy the inequality ig'(e-I) )»M' in order to stay in the
Bjorken limiting region as required.

For the elastic form factor of the proton we write

&P'I &„IP)= &UP'li„l UP).

In order to compute the two scalar form factors E, and I", or Gz and GM as customarily defined, we
need only work with the two good current components p =0 or 3. Then, according to the discussion in
Paper II [see especially Eqs. (10) and following], to leading order in P —~ all constituent particles in

f~ will be moving along the direction P (and along P in fpi) and the operator jo or j, will simply scat-
ter one of the charged constituents changing the magnitude but not the sign of its momentum projection
along P or P'. Furthermore we can separate the two form factors according to their spin dependence.
In terms of the Pauli two-component spinors g' and y and in the P- ~ frame (2),

&UP'I j"
I UP) =(2&) 'X'*[P,(q')-(o (x q +2M)&E,(q') lg, y. =0 or 3.

Taking the spin average as in (5) for vW„we obtain

F,(q') = (2m)'&UP'I j"
I UP), p, = 0 or 3,

Introducing the expansion (1) gives then

n n
E,(q')= g f rtd'k; dq &(1 Qq )QX,f -~ (q, . q;k, -q,q, ",k„

n=i 8

+(I-q, )q, ",k. ,-q.q)f/', " q.;k„, ",k„,",k.,). (7)

Each gz is the same in the initial as in the final wave function because no longitudinal momentum is
introduced by q according to (2), and the rotation from the direction P to P = P + q alters the longitudi-
nal projection of q, only by corrective terms -1/P' which we consistently neglect. This displacement
of the transverse projections by -gzq for each i is just an expression of this very rotation: Momen-
tum kii transverse to P is identical to order 1/P with kzi-qqq as reckoned relative to P'. Only the
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constituent a has its momentum altered by q as a result of the scattering by the current.
To determine the asymptotic behavior of E,(q') we must consider the various possible ranges of qj

that contribute to the overlap integral (7).
(i) If 1-qa does not take an extreme value within 1/q of I-qa =0, i.e. , 1-qa lies in the region 0&c

& I-qa &1, then (1-qa)q increases with q as q-™.The energy denominator associated with the scat-
tered final state is given by

1 [k„+(1-q,)q]'+m, ' [k„-q,q]'+m, '
/I

(8)

Thus there is at least one energy denominator of order Q'/P since a heavy state of (mass)' of order
Q is formed from an interaction creating a large transverse momentum squared proportional to Q .
In addition, due to the momentum mismatch between f~. and fz, at least one vertex matrix element in

(1) will be suppressed by a transverse momentum cutoff g(Q ). In this case, therefore, we have'

E,(q') &, Q 'g(Q'), g(Q') -0 as Q'-";
i.e., E,(q') decreases more rapidly than 1/Q'. To say more than this we require detailed models of
the cutoff. However, any association of the falloff of g(Q') with the observed transverse momentum
distribution from high-energy collision data. ' will generally predict a, too rapid decrease of E,(q2) in

(9). Furthermore, a variety of specific calculations in this region of parameters leads to a q-inde-
pendent ratio of E,(q')/E, (q') and thus to a ratio

G~(q ) Ei+ tcE~ 1
G (q') E, +(q'/4M') ~E, Q'

in defiance of the "desired" scaling law for the elastic form factors. A few examples of these calcu-
lations are illustrated in Fig. I. All these indications suggest to us that the contribution of primary
importance does not come from this region.

(ii) Suppose then that the more important region is 0& I-qa &rn/q where m is some characteristic
mass, so that k»+{I-qa)q in (7) remains bounded as q increases Acc.ording to (4), all the other k;~
-gz q with i ga are also bounded. For all i we write

Ikii qsq kzA-'=k&A+ksi'~ kai+(I-qa)q kai =ka~+kai ~

Introducing this notation into (7), we see that E,(q') becomes a series of overlap integrals in each of
which the transverse momenta are displaced by a bounded, finite amount kz~". In this case the longi-
tudinal (normalized) momenta q; are confined in a similar manner as discussed below (5): All but one

qq are within 1/q of zero, whereas in (5) they are within 1—I/&u of zero in the inelastic threshold
region; and as for q„1—7la &1/q here and -l-l/~ in (5). Since the transverse-momentum overlay
integrals will be generally finite and q independent, with numerical upper bounds according to a sim-
ple application of the Schwartz inequality, ' we look to the q integrals for the functional dependence on

q. Here we see that (5) and (7) differ only by the appearance of the 5(qa-I/~) in (5) which removes
one of the dg integrals and thereby avoids one additional factor -1-1/~. Thus we conclude that the
leading contribution of this region in (7) can be written

E,(q') -(1/q) "-(1/Q')' '"/' (10)

pr ')P+q P( ip+q II I
p ~ii,~~ p+q

(a) (b) (c)
F/G. 1.. Typical graphs contributing to elastic form factors as computed for Q —~ with y5 coupling of pions

(dashed lines) to nucleons (solid lines).
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as q —~, if the leading term contributing to the inelastic scattering in (5) varies as

as 1/&u -1. The diagrams in Fig. 1 are examples dominated by this region of parameters. These ex-
amples also lead to a decreasing ratio for E,(q )/E, (q') as q increases. Therefore it remains a pos-
sibility that the so-called scaling law for the elastic form factors is valid if indeed this is the domi-
nant region of contribution. '

(iii) Finally we must consider the region in between (i) and (ii),-i.e. , the region m/q ~ q& c (1. Gen-
erally we expect that this region can be ignored by choosing a sufficiently small value of c if region
(i) dominates, and by a proper choice of m if region (ii) dominates. Beyond this, we have not been
able to derive any general statements. To proceed further, we resort to "empirical mathematics, "
—i.e., specific calculations of types of diagrams in Fig. 1 and others. All these show that this region
never dominates and can always be incorporated in the manner described above. In fact, the overlap
integral (7) decreases as one increases the range of the q integration beyond the limit of region (ii)
and toward region (i). This results essentially from the growing energy denominators (8) since the
"masses" increase with q.

On the basis of the above discussion we infer —i.e., we conjecture —that the connection described by
(10) and (11) is generally valid. Their physical connection is that, near threshold, vW, measures the
probability that all but a fraction -(1-1/&u) of the proton's momentum is concentrated on one charged
parton in the P -~ frame as indicated in (5). Similarly, the dominant contribution to E,(q ) for as-
ymptotically large q measures the probability that. all but a, fraction -1/q of the proton's momentum is
concentrated on one charged parton. In this case the other partons emitted before the scattering by
the virtual photon can rejoin with the scattered one without introducing a large transverse momentum
mismatch -q at the vertex, as occurred in (9). The probability that UP) dissociates into only the
physical proton P) —i.e. , into one parton —has been set to zero by choosing Z, = 0 as required' in order
to insure that E(q'). vanishes as q-~. This has often been discussed' in the literature as the boot-
strap or composite-particle condition. In our present application it is interesting to note that the two
requirements, that both the nucleon and pion wave-function renormalization constants vanish so that
their electromagnetic form factors will do likewise as q-, present two constraints on the two pa-
rameters in the calculation: the pion-nucleon coupling constant g /4m, which nominally —15, and the
cutoff momentum 0 ~,„, which is characteristically —400 MeV as observed in high-energy secondary-
particle production events. Although lowest order perturbation calculations are notoriously dangerous
frameworks on which to base speculations, it is intriguing to note that to order g /4w the conditions"
Z, =Z, = 0 fix the values g /4z = 17 and k ~,„'= 0.2 Ge V'.

How well this connection in (10) and (11) can be tested experimentally is not certain at present. The
elastic form factors, assuming that they have already reached their asymptotic behavior by q'-25
GeV', come close" to P +1=4 in (10). However, should the data lie just on the verge of becoming as-
ymptotic it is also possible that" p+1=6. The curvature of vW, near ur =1, extrapolated from points
with ] Q'(&u-I) (» 1, is just beginning to be determined. ' On the basis of our earlier analysis we sug-
gested" that interactions with the part of electromagnetic current due to boson currents should dom-
inate over that part due to charged fermions near the threshold region. If this is true we would ex-
pect P to be an even power.

At this time the problem of determining P in (11) by comparison with experiment is the following.
Since Q'(10 GeV' is a restriction on existing data, ' and Q'(&u-1)» 1 is a requirement for our theoret-
ical model, we must consider a range of values 1.2& ~ g1.5. Thus our resulting numerical fit is
greatly affected depending on whether we write vW, -(a-1)~ which is its limiting threshold form, or
vW, -(1/&u)(l-I/&u)~ which is the natural form emerging from (5). Clearly we can make no quantita-
tive statement when the difference between these forms controls the fit. As written, Eq. (11) is con-
sistent with present data if we fix P = 3 from Eq. (10). Experiments at higher Q and smaller ur —1 val-
ues, both for the deep inelastic scattering and for annihilation processes, will be required before the
two forms (10) and (11) become strong mutual constraints on the theory.

According to our model, an odd integral value for p, such as p =3, is necessary if the nucleon-cur-
rent (or generally a spin-~ current) contribution is dominant. If this is the case, it also follows that
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the ratio of longitudinal to transverse cross sections is small —i.e. , MW, /vR', —&u/2, or in the notation
of Ref. I, 8 -O. The present data are' consistent with A $0.2 near threshold, indicating that this and
not even integral p is the case.

This region near threshold is of considerable interest not only for testing the connection given by
(10) and (11). The field-theoretical formalism on which the present discussion is based shows that
this is also the region in which the constituents are far off their mass shells, i.e. , they are very vir-
tual. It is here then that one is indeed probing very small space-time intervals by the study of deep
inelastic scattering.

*Work supported by the U. S. Atomic Energy Commission.
'E. Bloom et al. , Phys. Bev. Letters 23, 930 (1969); M. Breidenbach et al. , ibid. 23, 935 (1969); B. Taylor,

Stanford Linear Accelerator Center Report No. SLAC-PUB-677, 1969 (to be published).
J. D. Bjorken, Phys. Bev. 179, 1547 (1969).

3B. P. Feynman, Phys. Bev. Letters 23, 1415 (1969), and to be published; J. D. Bjorken, Bull. Am. Phys. Soc.
14, 15(T) (1969) [Stanford Linear Accelerator Beport No. SLAC-PUB-571, 1969 (unpublished)]; J. D. Bjorken and
E. A. Paschos, Phys. Rev. 185, 1975 (1969).

4S. D. Drell, D. J. Levy, and T. M. Yan, Phys. Bev. Letters 22, 744 (1969), and Phys. Bev. 187, 2159 (1969),
and Stanford Linear Accelerator Center Report No. SLAC-PUB-645, 1969 (Phys. Bev. , to be published). The last
two papers will be referred to as Papers I and II, respectively. The motivation for constructing this field-theory
framework was to provide the machinery for accomplishing crossing to the annihilation channel for study of the
Bjorken limiting behavior in the reaction e + 8 —.p+ anything. The same formalism has been used to compute in-
elastic neutrino cross sections and derive correlations in the final states when two particles are detected. For
more details of these applications see S. D. Drell, D. J. Levy, and T. M. Yan, Stanford Linear Accelerator Cent-
er Report No. SLAC-PUB-685, 1969 (Phys. Bev. , to be published); T. M. Yan and S. D. Drell, Stanford Linear Ac-
celerator Center Report No. SLAC-PUB-692, 1969 (to be published); and S. D. Drell and T. M. Yan, to be pub-
lished. In conformity with the standard notation in Bef. 1, we henceforth designate by ~ the variable called w in
these references.

See discussion in the last section of Paper I cited in Bef. 4.
6We assume that the effective cutoffs for the transverse-momentum integration permit the limit Q2 for the

energy denominator (8) to be taken inside the integrand. The resulting integration for any p; with i &a can diverge
no more strongly than logarithmically near the end point p; = 0, since otherwise the original integral will be infi-
nite in violation of the physical requirement that the form factors are finite. The same conclusion can also be ar-
rived at by counting powers of q appearing in the vertices and energy denominators from specific field-theoretic
models such as the pseudoscalar or scalar coupling for spinless meson, spin-2 nucleon systems. Due to the pos-
sible logarithmic divergences similar to the one just mentioned, our conclusion about the asymptotic behavior of
the form factors is valid only up to logarithmic factors in Q2.

~J. L. Dav et al. , Phys. Bev. Letters 23, 1055 (1969); D. B. Smith et al. , Phys. Bev. Letters 23, 1064 (1969).
Application of the Schwartz inequality gives

A, f g d~u, ., g dq, .e(I- Q q,.)f, f
~=i

1 $8
n a n=i.ll gd'~;, pd; (-Z )~f ~'~"tf II ';, II; (-Zn;If I')'"=I ~( (,).'). ,/, .i=1 i =f

1 $8

We should point out that examples in Fig. 1 give neither the observed q dependence of E& nor necessarily the
correct ratio of E&/E, which should be proportional to I/q if the scaling law is to hold. Nor do the corresponding
diagrams for pW2 predict the correct threshold behavior; see the discussion in Paper I. We only use the general
qualitative features of these field-theoretic models in order to correlate vR'2 and + &.

M. Gell-Mann and F. Zachariasen, Phys. Bev. 123, 1065 (1961). See also the discussion and references cited
by S. Weinberg, in 1964 Brandeis Lecture Notes (Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1965), Vol. 2.

~'See Eqs. (18) plus (19) and (20) of Paper II. A somewhat different use of these conditions was discussed by
A. Salam, in Proceedings of the International Conference on High Energy Physics, CERN, 1962, edited by J. Prent-
ki (CERN Scientific Information Service, Geneva, Switzerland, 1962), p. 686, 1962), p. 686.

~2See W. K. H. Panofsky, in Proceedings of the Fourteenth International Conference on High Energy Physics, Vi-
enna, Austria, September 1968, edited by J. Prentki and J. Steinberger (CERN Scientific Information Service,
Geneva, Switzerland, 1968), p. 27.

A. Zichichi, in Proceedings of the Fourteenth International Conference on High Energy Physics, Vienna, Aus-
tria, September 1968, edited by J. Prentki and J. Steinberger (CERN Scientific Information Service, Geneva,
Switzerland, 1968), p. 87.



Voz. UME 24, NUMszR 4 PHYSICA L RKVIK%' LKTTKRS 26 JANUARY 1970

4This is a less specific statement &han given in Paper I below Kq. (30) and is made in the light of all the data now
available ~e thank Dr. E. Bloom and Dr. g. Taylor of the Stanford Linear Accelerator Center for discussions of
the data in its present state.

' See the discussion below Eq. (30) in Paper I.

FERMION REGGEEZATION WITHOUT PARITY DOUBLING*

R. Carlitz and M. Kislinger
California Institute of Technology, Pasadena, California 91109

(Received 16 October 1969)

The common belief that fermions lying on linear trajectories must have opposite-pari-
ty partners is shown to be false. Beggeization of a sequence of positive-parity fermion
resonances is carried out in the Van Hove model. As a consequence of the absence of
negative-parity states, the partial-wave amplitudes must have a fixed cut in the J plane.
This fixed cut, in conjunction with the moving Begge pole, provides a new parametriza-
tion for fermion-exchange reactions, which is in qualitative agreement with the data.

Gribov' showed that every fermion Regge trajectory [n'(W)] must be accompanied by a MacDowell
symmetric' trajectory [n (W) =n'( —W)] of the opposite parity. If (as is indicated by experiment for
N~ and A~) a trajectory is linear inu=W, its MacDowell twin will be degenerate with it. Hence it has
always seemed puzzling that no parity partners of the N and b (1238) have been found. Attempts to find
an analytic form in which states on the MacDowell twin are systematically suppressed have not been
successful. ' We deduce the appropriate analytic form from a model containing only resonances of pos-
itive parity lying on a linear trajectory. The partial-wave amplitudes are found to have a fixed Regge
cut, and the negative-parity (MacDowell twin) trajectory lies on an unphysical sheet of the J plane at
positive energies. The idea of a fixed Regge cut is not new; it is present in the solution of the Dirac
equation with a Coulomb potential. In the present problem it is, of course, possible to have parity
doubling and no Regge cut; but lacking any a priori reason for parity doubling, we anticipate in gener-
al the presence of a fixed Regge cut in fermion-exchange amplitudes.

We will illustrate the origin of the fixed cut in the Van Hove model. ' The amplitude in this model is
the sum of Feynman diagrams for the exchange of all resonances along a given trajectory. Clearly,
this amplitude satisfies the usual analyticity requirements and contains only the resonances of the in-
put trajectory. In ~N scattering, the Feynman diagram for the exchange of a natural-parity (J

, &', ~ ~ ~ ) fermion resonance of spin J = I+ 2 and mass m(l) in the u channel" is

where T&, is the propagator for a spin-4 fermion. We Reggeize by summing a sequence of resonanc-
es and transforming the sum into an integral a la Sommerfeld and Watson'.

All terms but those contributing
have been dropped.

If we take m2(l) = (l-n, )/n' and
contour in the l plane and obtain
at l =n, (see Fig. I). This gives

to the leading power of the asymptotic expansion of K(u, z, ) as z, —~

assume for convenience that g'(l) is analytic in l, ' we can open the
a contribution from the pole at m'(l) =u and the cut with branch point

(
mg'( (nu))P' "P („„'(z,)n' Q——W

~
0 g'(l)p' P, „'(-z,)

sinmn(u) ~ W . „[—m'(l)]' '[u —m'(l)] sinful '

where

n (u) = n, + n'u.
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