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for the existence of the two-phonon octupole vi-
bration. The population of the two-phonon octu-
poke band should also be possible in radioactive
decay for other nuclei in the heavy-mass de-
formed region.

We are indebted to Dr. T. Thorsteinsen and
Dr. F. K. McGowan for informing us of their re-
sults prior to publication.
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The combined data for the high-energy backward reactions mN-Nx, m N Np, and
yÃ'-Nn are analyzed in terms of the strong-cut Reggeized absorption model proposed
by Henyey, Kane, Poplin, and Ross. Only the N and 6 trajectories and the associated
Regge cuts are necessary to describe the data, including the dip structure. The analy-
sis lends strong support to the model, in particular to the feature that the Regge pole
amplitudes do not have zeros at nonsense wrong-signature points.

In the past few years there have been proposed
several models of high-energy two-body scatter-
ing processes which combine the physics of
Regge-pole exchange and the absorptive proper-
ties of hadrons. ' 4 All of these models are es-
sentially in agreement on the nature of the rela-
tion between absorption and Regge cuts and on
the form of the leading Regge cut to be associated
with each Regge pole. There are, however, sig-
.nificant differences in the form of the Regge-pole
amplitude and in the expected size of the Regge
cuts associated with inelastic intermediate
states. In the strong-cut Reggeized absorption
model (SCRAM) of Henyey, Kane, Pumplin, and
Ross (HKPR) there are no nonsense wrong-signa-
ture zeros (NWSZ) in the Regge-pole amplitudes
(it has been shown by several authors that there
is no theoretical necessity for NWSZ; HKPR ref-

erenee these arguments and discuss in detail the
physical motivation for the omission of NWSZ in
SCRAM), and there are significant contributions
from Regge cuts associated with diffractively
produced inelastic intermediate states. Both of
these features enhance the strength of the net cut
contribution and lead to dips in s-channel helicity
amplitudes arising from pole-cut interference.
We use the words "strong-eut" in reference to
this model in order to emphasize these features.

Data. —We list here with references the back-
ward reactions that will be discussed in this
Letter. ' We have limited our attention to reac-
tions involving nonstrange baryon exchange at lab
momenta &5 BeV/c. Only cross-section data are
discussed; unfortunately there exist no measure-
ments of polarizations or density matrices at
these energies. ' The reactions are as follows:
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drr, pp dp

Regge-pole models. —An examination of the
data on the above reactions indicates that no

simple model having Regge-pole amplitudes with
NWSZ at n„= ——,

' can describe all of these data
simultaneously. There are several aspects to
this argument:

(A) The only trajectories that can reasonably
be considered sufficiently high lying to describe
high-energy data are N, 4, and N&.

(B) In a NWSZ model any reaction in which
nucleon exchange is allowed will exhibit a deep
cross-section dip around & = -0.15 if nucleon ex-
change dominates. " Such a dip is seen only in
& p-p&'. Therefore NWSZ models must have

important & and/or N& exchange contributions.
(C) The size of the & contribution in photopro-

duction can be inferred from p production using
vector dominance. The cross section for 7r p
-pp at 8 BeV/c and u =-0.15 is about 3.5 pb.
Using vector dominance (with yz'/4rr = 0.5) this
gives an upper limit (corresponding to purely

transverse p production) of 1.4 nb (2.8 nb) for
the yp -nrr' (prr') cross section arising from 4
exchange alone. The actual cross section is
about 6 nb (4.5 nb). Thus, at least in charged
photoproduction, & exchange cannot account for
a large percentage of the cross section at &

= -0.15 without grossly violating the hypothesis
of vector dominance. If this argument is applied
to the integrated backward cross sections it is
still stronger because the backward peak in p
production is considerably steeper than in photo-
production.

(D) If the photoproduction cross sections are
primarily due to N& exchange at + = -0.15, as in
the models of Barger and Weiler" and Beaupre
and Paschos, "then factorization requires the N&
also to fill in the dip in rr'p -p&'. This is so be-
cause the pp-drr' and pp-dp' cross sections
are a.pproximately equal, and therefore the &NN&

and AN�& vertices must be approximately equal
at u =-0.15 (6 exchange is forbidden in these re-
actions). A simple factorization and vector-dom-
inance argument which neglects spin, 4 exchange
in photoproduction, and the isoscalar component
of the photon leads to the following relations:

4y, ' 0(yp -prr ')o(pp -dm+) 2y, ' rr(yp —nrr')a(pp -drr')
rrn 0(pp —dp') rro. 0(pp —dp+)

where o denotes dv/du at u = —0.15 and o ~ denotes the cross section coming from Nr exchange alone.
The observed value of o(pp-drr')/o(pp-dp') at 21 BeV/c is about 1. Using the same value at 10
BeV/c, the second and third members of Eq. (1) are 2.8 and 1.9 gb, respectively. The observed 7r+p

-prr' cross section at u = —0.15 and 10 BeV/c is 0.15 pb.
The approximatiorrs made in obtaining this estimate (except neglect of spin) are fairly well satisfied

in the Regge-pole models"" that have been used to describe the photoproduction data. We feel that
the above estimate exhibits a possible order of magnitude discrepancy in spite of the rather crude way
in which the numbers were obtained.

(E) A NWSZ model for rrN- Nrr which fits the rr P —Prr and 7r'P -Prr' data will have a deep dip in the
rr p-n7ro cross section ne"r the position of the rr'p-prr+ dip. However, the data show a shallow dip or
break somewhat beyond u = -0.2 and it therefore appears likely that no NWSZ model can quantitatively
describe these processes. A fit to rr p-p7r and 7r'p-p7r' using SCRAM produces a rr p-nrr' cross
section with a break or dip whose depth is quite parameter dependent, but whose position is rather in-
sensitive to the parameters and agrees with the existing data. ."'

(F) All of the above remarks apply with little change to "weak-cut" models in which the Regge pole
amplitudes have NWSZ and there are no cuts arising from inelastic intermediate states. "

SCRAM. "—We consider processes of the type a+b -c+d where a is a pion, b and c are nucleons,
and d is a meson, isovector photon (y"), or isoscalar photon (y'). For convenience of presentation we
use rN-Ny amplitudes to calculate photoproduction cross sections; the full photoproduction amplitude
is the sum of the nN-Ny" and the mN- Ny' amplitudes.

Let the particles have helicities A, , =A. , A. ~
= p. , X, =A. ', and A„= p', and define

n =
I
(&'-~')-(&-v )I, n' = I(&'-~')+ (&-u)l, ~ = I&'-&I +

I
~'-u l-n-l.

The Regge-pole s-channel helicity amplitudes for reaction R =—a+ b-c+d are
WR ~ PA I

Mop', xp
' = ~ Map; ~tI =M, Q
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Table I. Vertex functions, isospin vector-dominance coefficients, and parameter values.

DEFINITIONS OF VERTEX FUNCTIONS

ISOSPIN — VECTOR DOMINANCE

COEFFICIENTS, CI
R NUMERICAL VALUES OF PARAMETERS

7rN
y —o

7rN . 7rN
yp1 ~yp 1

2 2

7rN
y- —'02

G
p ~+a/yp G = J~cx/y n = —.54+, Ol+u+1. 16uN

n (MN)
= 1/2 sN

—— .51

u = .14-.23ju+1.08u.

c (M )
=—3/2 s& = 1.15

dN
yll

dN-'y-1--'
2

7'
y —o yo — yo-—20

7rk-'y--'o = I'
2 7r p ~p7r

+ +
7r p ~p7r 2/3
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N N

~7rN-&.N p
N

&7rN-+ N7r &7rN ~ N to

P = 2.48+3.65tu

dN
1

dN
yp

yl-'

Pn
yl-l

Pa,
yp I

dN
y-17.

2

dN
&yp 1

2

. Pa,
y-1 3-

2

. Pa
yo 2

N
C

d

d=POrcD 7r p n7r /F/30 -j2/3

7r p~pP

w pmnP j2/30 —JF/3

7r p~py Gp/3
0 v

)) n~py J20 /3

7r p~py G /30 s

2Gp/3

w n~py -J2GP/3 J2GP/3

() = 13.1-4.$7ju

aP
—— -7.31-11.8ju

bp = 1 78-6.9 jOu

N N)) /j2X

= -3.73-17 9juN

CD

.683+.223ju

a = —.416+4.29tu
y~ = -4.6y+4. 40~u

c = -5 44+5 02/u

y /47r = .37

2 = 2' =-"e

P, P, a&, etc. are real analytic functions of &u.

Identity signs, —=, denote "hard" constraints that were imposed on the parameters during data fitting.

where

M„.„.. ~„"'=(M„)' " "(i)' "[(s)'/'cos2&]"(sin —,'&)"'

,y, ~,, "(A)~„,„"(/u) e "'s)"~' "'
I—ivl I 0

+(vu- —Zu) .

The vertex functions y and the coefficients C, are given in Table I; ), =exp(2i)7S, ), where S&= (E( M)
is the spin of particle I. The photoproduction amplitudes are related to p- and ~-production ampli-
?e )'.,". by vector dominance; thus the d' occurring in the vertex function y„,„" ' is p (~) if d is y" (y');
otherwise d' =d.

This parametrization satisfies factorization, MacDowell symmetry, nonsense decoupling, "absence
of parity doublets, and real analyticity conditions. Only the N and & particle poles are retained; Reg-
ge recurrences are neglected since they are far from the scattering region. We have assumed that the

N& trajectory is sufficiently low lying so that its contribution can be ignored.
The Regge-cut amplitudes for reaction R are (see HKPR appendix)

CR ~ CR I
Mvp'; xp ~ M vp'; xpI =N, D

where

M„i„i.„'=-(8E) 'A. , or(l ip)e"" 'f dv'e-"" 'f„(A(vv')' ')M ~ ..„„''(u'), (4)

and A' =a+ 6 -c+d', v =u-u, „, and v' =u'-u
Here o&, p, and A. are, respectively, the total
cross section, real-to-imaginary ratio of the for-
ward amplitude, and slope of do/dt for mN elastic
scattering. Their values are taken from experi-
ment: o& ——27 mb, p=-0. 15, 4=7 BeV '. The
constant factor A.I is meant to take approximate
account of cuts arising from inelastic intermedi-
ate states; it is treated as an adjustable parame-

«sldu = («~~'s) 7, IM ~ „., » "l', (5)

where Q means average over initial helicities
and sum over final helicities. For photoproduc-

ter but is expected to be in the range 1.5SA S2
(see HKPR).

The full amplitudes for reaction R are MzP& . z„
=M z.„.z„' +M&„.z„' and the cross section is
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tion the amplitudes in Eq. (5) should be replaced
by the sum of the y" and y' parts.

The structure of some typical amplitudes is il-
lustrated in Fig. 1. In general, helicity ampli-
tudes must vanish at u =u, „as (u, „—u)"~a; so
only n =0 amplitudes can contribute in the back-
ward direction. The magnitude of the cut term is
usually less than that of the pole term near u =0,
but the cut term has a smaller slope and eventu-
ally crosses the pole term. The pole and cut
terms are about 180' out of phase [see Eq. (4)];
so there is a dip in the total amplitude near the
point where they cross. For an n=0 amplitude
[Fig. 1(a)] this dip is usually in the range 0.1

-u&0. 25 and is rather deep. In an n=1 ampli-
tude [Fig. 1(b)] the size of the cut term relative
to the pole term is smaller than in an n = 0 ampli-
tude because the integrand in Eq. (4) vanishes at
u'=u „if n&0. Thus the dip in an n=1 ampli-
tude is usually in the range 0.5- -u-0. 7. This
dip is shallower than an n = 0 dip because the rela-
tive phase of the pole and cut moves away from
180' as -u increases.

Figure l(c) shows the decomposition of the a p
-P7T cross section into its n=0 and n=1 compo-
nents. This illustrates how the full cross section
can be smooth even though there are dips in the
individual helicity amplitudes. Because of this
"filling-in" effect we expect that there will hard-
ly ever be deep dips in cross sections for reac-
tions involving high-spin particles. The presence

of dips in the helicity amplitudes can be tested by
measurements of spin density matrix elements.
In particular, Fig. 1(c) indicates that the n p
-Pa polarization is very small at u = —0.15.
Measurement of this polarization would provide
an important test of SCRAM. The presence of
dips could also be tested by using finite-energy
sum rules (FESR) for helicity amplitudes. In
particular, we would predict a dip in the left-
hand side of an FESR for the n = 0, v P -Pa' am-
plitude at about u = -0.15, but no such dip in an
FESR for the n =1, m'p-pa' amplitude. NWSZ
models would predict exactly the opposite.

Fits to data. —Our current best fit to the data on
seven backward reactions is shown in Fig. 2 along
with predictions at 50 BeV/c. " The X' for this
fit, including all data shown, is 1030 for 291
points. The worst part of the fit occurs in the mN

-Nm reactions. This is partially accounted for
by apparent inconsistencies in the relative nor-
malization of data from different experimental
groups. For example, most of the 8-BeV/c w P
-pv data lie slightly above the 6.9-BeV/c data
and this alone accounts for over 10 /p of )i'.

One of the more interesting features of the fit
is the predicted structure of v P -Pp near u
= —0.5. Although the precise shape of the theoret-
ical curves should not be taken too seriously, we
do believe that there will be a break in the slope
of the cross section around u = -0.5 due to the
secondary maxima in the n =0 amplitudes.
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plitudes. Some support for this argument comes
from a similar result for pion exchange in for-
ward charged photoproduction. '

The quality of the fit can be improved by either
relaxing some of the constraints or omitting
some of the data. However, we believe that a
good fit to all the data with physically meaningful
parameters is more useful than a perfect fit to
part of the data with unphysical parameters.

Concerning the pole extrapolations we mention
in particular that we have a & width of 90 MeV.
The ~ width has invariably come out too small in
Regge-pole fits to n P —Pm . We ean get a large
value and still fit the data because the cancela-
tion between pole and cut allows the pole ampli-
tudes to be larger than in the absence of the cut.
Still larger values can be obtained if one fits the
v p pn-da'ta alone.

A number of topics not discussed here will be
covered in a paper now in preparation. These in-
clude analysis of NN-7tm and mN-N~, and more
detailed treatments of mN- N~ polarization and
mN- Np.
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