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A number of lattice models of phase transitions and critical points can be related to one
another by variation of linear parameters appearing in the Hamiltonian. It is suggested
that the critical indices as functions of these parameters remain constant except possibly
at points where the nature of the associated first-order phase transition is itself altered
by varying a parameter. Several models exhibiting critical phenomena are consistent
with this proposal.

At present it is fashionable to analyze critical
phenomena in terms of certain indices n, P, y,

p, etc. which describe the rate of divergence
of certain thermodynamic derivatives or ranges
of correlation functions upon approaching a crit-
ical point. ' Theoretical estimates for these in-
dices, coming largely from analyses of various
lattice systems (Ising, Heisenberg, etc.) sug-
gest that they are largely independent of the de-
tails of the system Hamiltonian. The indices do,
however, depend on (a) the lattice dimensionality
d, (b) the "symmetry of the order parameter" in
the sense that, for example, Heisenberg and

Ising model indices are unequal, and (c) the
range of interaction, provided it decreases suffi-
ciently slowly with distance. To these might be
added a fourth effect: the "renormalization" of
critical indices by imposition of a constraint in-
volving one or more extensive thermodynamic
variables. ' As renormalization can be under-
stood in terms of straightforward thermodynamic
arguments, we shall not consider it further; all
our comments below refer to the "unrenormal-
ized" exponents.

We shall show that changes (a), (b), and (c)
above can be regarded as arising when a certain
linear parameter in the system Hamiltonian
achieves a particular value, and that changes in
the character of the basic first-order phase tran-
sition "underlying" the critical point usually take
place at the same parameter value. Our approach
is phenomenological and we are unable to pre-
dict values for the changes of critical indices.
Nonetheless, this viewpoint may suggest a deeper
connection between the three (known) causes of
critical index change than has heretofore been
suspected. It also provides a basis for making
an educated guess about the alteration or identity
of critical indices in cases where numerical
studies have not been carried out or yield uncer-
tain results.

(A) As an example of our procedure, consider
an Ising model on a simple-cubic lattice with
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FIG. 1. Phase diagram for cubic Ising ferromagnet

with fixed intralayer and variable interlayer exchange.

nearest-neighbor ferromagnetic exchange, but
with the exchange interaction J between spins
lying in the same layer differing from the ex-
change J' between spins in adjacent layers, Fig.
1(a). With J constant, let J' decrease to zero;
the Curie temperature will presumably decrease
continuously to the positive value associated with
a simple layer structure, Fig. 1(b). In this fig-
ure a magnetic field axis has been added and the
cross-hatched region at II= 0 lying beneath the
line of critical points for J' &0 is a "coexistence"
surface in that the two "phases" of spin up and
spin down in the spontaneously magnetized state
coexist along this surface. According to current
ideas on the subject, the critical indices should
retain their three-dimensional values for all J'
&0 and only revert to the (quite different) two-
dimensional values precisely at J' =0. %hat we
wish to point out is that if we consider J' &0,
the whole nature of the phase transition in the
HT plane (at constant J') is altered. This arises
from the fact that with J' &0 the predominant spin
direction in the ordered state with II =0 alternates
up-down-up-down in consecutive layers, while.
the magnetic field tends to force spins in all the
layers to point up (or down, depending on the
sign of H). While the detailed phase diagram is
not known, it probably resembles that of certain
metamagnetic materials. ' In Fig. 1(b) the dotted
lines indicate portions of the phase boundary at
T= 0 and H = 0 which are known exactly: the T = 0
lines determined by energy considerations, and
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the B=0 line which is simply the mirror image
of the critical line for J'&0.

This suggests what may be a fairly general
rule: Critical indices along a line of critical
points terminating a first-order phase-transition
surface remain unaltered' unless the basic char-
acter of the phase transition itself is altered, as
is clearly the case at J'=0 in the model just con-
sidered. Note that the critical indices need not
be different at the point where a change occurs;
consider, for example, a case like that in the
preceding paragraph, but with only two layers
(rather than an infinite number), for which both
J' =0 and J' &0 would (according to current ideas)
have two-dimensional critical indices, whereas
the phase diagram should not differ radically
from that shown in Fig. 1(b) (one might expect
dT, /dJ'=0 at J'=0).

(B) Consider next the dependence of critical in-
dices on the "symmetry of the order parameter"
in the Hamiltonian

K = -JZ (S,.„S,.„+S,,S,, + (I +J')S,,S,,j
('~)

--e+S,.„(1)
i

with the sum over nearest-neighbor sites on a
lattice of dimension d ) 3. Jasnow and Wortis'
have argued that at least in the case where S,
are classical unit vectors (moving on th. surface
of a sphere), the critical indices change from
Ising-like at J' &0 to Heisenberg-like at J'= 0,
and this conclusion seems consistent with the
results of Obokata, Ono, and Oguchi, 'who anal-
yzed (1) in the spin-& case. The phase diagram
should resemble Fig. 1(b) because for small neg-
ative J' the spontaneous magnetization will tend
to lie in the xy plane rather than parallel to the
z direction, so that the field II is no longer the
thermodynamic conjugate to the order parameter.
Other cases considered by Jasnow and Wortis
may be discussed in a similar fashion.

(C) The Ising linear chain with ferromagnetic
interactions decreasing as x ' ', with ~ the
distance between spins, is known to have a first-
order phase transition7 for 0 & e &1. The numeri-
cal studies by Nagle and Bonner' indicate critical
indices varying continuously with e in the range
0 & e &1. Note that e is not a parameter which
appears linearly in the Hamiltonian. For our
purposes it is convenient to consider a linear
chain with Hamiltonian

X =Q (Z/~„"'+ J'/r, ,"")o,o„.

where v,. = +1 are the Ising spin variables, and J
&0. For J'&0, the ground state of the chain is
ferromagnetic (all spins parrallel) and the same
is true when J' is slightly negative provided e''

& e or c' &1. However for c' & e and 0 &e' (1,
even a small negative J' leads to a ground state
consisting of up spins and down spins in alternat-
ing blocks, the length of a block increasing as

~

J'i/J-0. This strongly suggests (though it does
not prove) that the phase diagram is analogous
to Fig. 1(b) in that the nature of the first-order
phase transition changes character at J'= 0 for
0 & e &1, which is consistent with our proposal
and the observed variation of indices with e if
one makes the reasonable assumption that for J'
&0 the critical indices are appropriate to the
force of longer range (i.e., correspond to e' rath-
er than e).

(D) Ising ferromagnets with next-nearest-neigh-
bor interactions, and, indeed, any set of ferro-
magnetic pair interactions of finite range, should
have the same critical indices as found for the
nearest-neighbor case. This result, based on
numerical studies, is consistent with our postu-
late. Thus if J' is the strength of the next-near-
est-neighbor interaction on, say, a square or
cubic lattice, making it slightly negative should
not change the ferromagnetic nature of the phase
transition (it certainly does not alter the ferro-
magnetic ground state). Hence both coexistence
surface and critical line should pass smoothly
through J' = 0. The Lee-Yang theorem" shows
that the transition remains ferromagnetic for
all J' &0; thus the result stated in the first sen-
tence of this paragraph is very plausible within
the framework of our phenomenological consider-
ations.

(E) Ising ferromagnets with spin S & 2; i.e., S = 1,
—'„2, etc. , but with S&~, should have the same
indices as S=

& on the same lattice. " Note that
an Ising spin S & 2 can be obtained by coupling
clusters of S= —,

' spins with ferromagnetic bonds, "
and using the results of (D) above.

(F) The infinite-spin Ising ferromagnet obtained
by replacing v,. = +1 by a continuous variable —1
&», &1, is not covered by (E). Consider, however,
the infinite-spin Hamiltonian

x = -JZ», », -DZ»

which goes over into the S= —, case as D- ~. Let-
ting a parameter approach infinity involves some
subtleties, and there are cases where critical in-
dices are believed to change in such a limit. "
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However, these are situations where letting the
parameter go to infinity serves to produce very
long-range effects in which behavior of one por-
tion of the lattice may be strictly constrained by
choosing appropriate conditions at distant bound-
aries. Such is not the case with (3), where letting
D- ~ produces a local rather than long-range
constraint. Hence we expect the indices for Is-
ing S = ~ to be the same as S = —,', and recent cal-
culations'4 have tended to remove the small dis-
crepancy suggested in Ref. 5. It may be added
that the continuity of critical indices when a pa-
rameter becomes infinite in the sense of D in (3)
is supported by numerical work" showing the
(apparent) identity of indices for the "xy" model
and the "planar" model, the latter being obtained
from the former (we here consider the S, as
classical unit vectors) by letting D -~ in

X=-JQ(S;„S,„+S;„S;„)+DQ(S;,)',

(G) A Heisenberg model with spin S &-,' can be
obtained by coupling together clusters of S=

&

spins with ferromagnetic Heisenberg interactions
which must, however (in contrast to the Ising
case), be allowed to become infinite. The situa-
tion is analogous to that discussed in (F) above,
and thus we think it plausible that if the S = —,

'
Heisenberg model with ferromagnetic interac-
'tions of finite range has the same indices as the
model with nearest-neighbor interactions alone
[itself a reasonable conjecture from our postu-
lates, following the reasoning in (D) abovej, all
Heisenberg ferromagnets with finite spin and
finite range of interaction should have the same
critical indices. Numerical investigations at
present support exceptional behavior for the near-
est-neighbor S= 2 case, "but due to the difficulty
in analyzing these series we do not b lieve a
contradiction with our ideas has been definitively
established.

(H) For Ising ferromagnets with long-range in-
teraction decreasing as x " ' on lattices of di-
mension d ~ 2, considerations similar to those
in (C) above suggest that for e &1 the critical in-
dices will be the same as those which arise with
only nearest-neighbor interactions present. This
prediction differs from the results obtained by
Joyce" for the spherical model: y varying with
e in the range 1 & e &2 for d= 2 and 1.5 & e &2 for
d = 3 (for smaller values of e, 7

= 1). The differ-
ence can be traced to the fact that the Ising fer-
romagnetic ground state is more stable than that
of the spherical model against weak kong-range
antiferromagnetic interactions. The Heisenberg

model should resemble the spherical rather than
the Ising model in this respect. It is tempting to
conjecture that the Ising indices switch abruptly
from nearest-neighbor values with e &1 to clas-
sical values for c &1, with possibly special val-
ues at e =1." Qur approach suggests that changes
in Heisenberg-model indices could also occur
for 1&a &2 as well as 0&a &1.

(I) Although they are not lattice systems, we
remark that the failure to observe a "quantum
effect" in critical indices for monatomic gases'
(the parameters of interest are the coefficients
of terms in the interatomic potential, together
with the inverse mass) lends support to our pro-
posal that critical indices remain the same if
there is no fundamental change in the underlying
phase transition. In addition, there are a num-
ber of systems (binary liquid mixtures and anti-
ferromagnets in an external field) where the crit-
ical point seems to be smoothly dependent on
parameters which can readily be changed in the
laboratory. Although we know of no systematic
investigation of critical indices as functions of
these parameters, we also know of no instances
where they have been observed to change, at
least away from regions where the nature of the
first-order phase transition is itself changing.

A suitable conclusion to this paper would be a
suggestion as to why a term which, when added
(in a small amount) to the Hamiltonian with one
sign alters the nature of the phase transition,
will change the critical indices when added with
the opposite sign. Unfortunately, we have no
good ideas in this connection and would welcome
suggestions by those who have achieved some
deeper understanding of the subject.

It is a pleasure to acknowledge several helpful
discussions with Dr. John Nagle on the effects
of long-range interactions.
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We report accurate measurements of the caliper dimensions of the molybdenum Fermi
surface. From these measurements. we estimate the separation between the electron
jack and the hole octahedra along the (100) directions to be (7.5 +1)% of the 1 ti dimension.
This large separation implies that spin-orbit coupling is much greater than expected for
metallic molybdenum.

Considerable effort has been directed toward
obtaining an understanding of the itinerant rather
than localized character of the d electrons of the
chromium- group metals: chromium, molybde-
num, and tungsten. These three metals are par-
ticularly interesting because of the reported sim-
ilarity of their paramagnetic energy-band struc-
tures and Fermi surfaces. ' One aspect of the
electronic structure concerns the significance
and magnitude of spin-orbit coupling effects on
the d-like conduction electrons. For the chrom-
ium-group metals, this information can be ob-
tained from an accurate determination of the
larger Fermi-surface pieces. Figure I is a
(110) section for the major Fermi-surface pieces
for these metals, as proposed by Lomer' and
verified by Loucks. ' These major pieces consist
of an electron surface in the shape of a child' s
toy jack at the center (&) of the Brillouin zone
and octahedrally shaped hole surfaces centered
at points H. In the absence of spin-orbit cou-
pling, the jack and octahedra contact along I.'H

directions. If spin-orbit coupling exists, how-
ever, the jack and octahedra are separated by a
gap. This gap is attributed to spin-orbit splitting
of the degenerate &, energy band at the Fermi
energy. From a knowledge of this gap dimension
and of the detailed energy-band structure along

b. (along &H), it is possible to estimate the mag-
nitude of the spin-orbit splitting.

Since tungsten is the heaviest of the chromium-
group metals, it would be expected to exhibit the
largest spin-orbit coupling effects. That is, one
would expect the separation between the jack and
the octahedra to be the greatest for tungsten
since the spin-orbit splitting of the &, state
should be the largest. On the basis of a radio-

H

FIG. 1. A (110) section for the molyMenum Fermi
surface as proposed by Lomer.
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