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SPIN POLARIZATION BY INELASTIC ELECTRON-ATOM COLLISIONS

W. Eitel and J. Kessler
Physikalisches Institut der Universitat Karlsruhe, Karlsruhe, Germany

(Received 27 April 1970)

Measurements of electron spin polarization resulting from inelastic electron scattering
by mercury (excitation of the 6 P& state; 6.7-eV energy loss) are reported. The angular
dependence of the polarization has been measured for incident energies of 25, 30, 50,
and 180 eV.

Electron spin polarization due to elastic scat-
tering is one of the topics of atomic physics
where there have been very recent advances. '
But so far there has been neither theoretical nor
experimental work on the problem of electron
polarization in inelastic scattering although the
importance of this point has been occasionally
emphasized. " It is the purpose of this Letter
to present first experimental results on this
problem.

The spin polarization P(H) of electrons after
excitation of the 6'P, state of mercury has been
studied in the angular range 20' &8 &135'. The
apparatus is similar to that described in an ear-
lier paper, ' the main difference being a differen-
tial energy analyzer in between the scattering
chamber and the Mott detector.

There were two main difficulties in the experi-
ment: Since the inelastic cross section at larger
angles is rather small, the intensity in the in-
elastic channel was low. According to the early
measurements of Mohr and Nicoll' which have
been recently repeated by Eitel' and Gronemeier, '
the inelastic cross sections are by one to two or-
ders of magnitude smaller than the elastic ones.
This together with the fact that elastic and in-
elastic cross sections have very similar shapes
at many energies causes the second difficulty:
One has to make sure by elaborate measure-
ments that the observed results are not due to
double (or plural) scattering, where one of the
processes is a large-angle deflection. At each
energy the reliability of the results had to be
checked by systematic reduction of the target
density.

Figure 1 shows two examples of inelastic po-
larization curves together with the correspond-
ing elastic polarization curves. Elastic and in-
elastic results resemble each other closely at
180 eV, whereas at 25 eV there is no similarity
at all. The measurements, which are not pre-
sented here, show that the similarity extends
down to 50 eV, whereas at 30 eV elastic and in-
elastic curves differ considerably. The cross
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FIG. 1. Comparison of results for elastic and in-
elastic scattering (6.7-eV energy loss) from mercury.
Points, experimental polarization P; dashed curve,
theoretical polarization P (Ref. 7); solid curve, exper-
imental cross section do/d& (arbitrary units) .

sections show a similar behavior, as has been
known for a long time. 4

The polarization measurements confirm the
simple model which Massey and Mohr' and Mas-
sey and Burhop' used to describe inelastic scat-
tering: The inelastically scattered electron ob-
served at large angles has undergone a small-
angle deflection in exciting the atom and large-
angle elastic scattering in the field of the same
atom. The experimental results are compatible
with the fact that it is the latter process which is
responsible for the polarization. When the ener-
gy loss can no longer be considered small com-
pared with the incident energy the simple model
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breaks down, and neither cross sections nor po-
larization curves for inelastic and elastic scat-
tering are similar.

Quantitative calculations of the polarization ef-
fects, taking into account the coupling between
elastic and inelastic channels, ' in conjunction
with the present measurements would yield de-
tailed information on the inelastic scattering
process and are highly desirable.
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CONTINUITY OF THE PRESSURE
AS A FUNCTION OF THE DENSITY FOR SOME QUANTUM SYSTEMS
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(Received 11 May 1970)

We prove that for quantum systems with hard-core or repulsive interactions, the pres-
sure is a continuous function of the density, for Boltzmann particles and for bosons at
low density.

An important problem in a rigorous formula-
tion of equilibrium statistical mechanics is the
problem of the existence of the so-called thermo-
dynamic limit or infinite-volume limit. Knowing
the interactions of the particles at the micro-
scopic level, one constructs the partition func-
tion for a finite system via the Gibbs distribu-
tion. The thermodynamic quantities that de-
scribe equilibrium, such as the free energy per
unit volume or the pressure, are then obtained
from the partition function by a suitable limiting
process in which the system becomes infinite.
For instance, in the grand canonical formalism,
which we shall consider exclusively here, the
pressure P is defined as a function of the inverse
temperature P and the chemical potential p, by

PP = lim PPA = lim V ' lnZ,

where Z is the grand partition function of a sys-
tem in equilibrium at (P, p), enclosed in a box
A of finite volume V. The density p is then de-
fined by p =dP/dp. . One is then fa.ced with the
problems of proving that the limit (1) exists, and
that the function p(p, p.) thereby obtained has rea-
sonable properties. Of special interest is the
property that p, considered as a function of p,
after elimination of p, between p and p =dP/dp,

should be continuous. The existence problem of
the limit (1) has received extensive treatment in
the last ten years, both for classical and quan-
tum systems, and is by now well understood. '
The continuity of p(p), however, has been proved
only for classical systems. " In the present pa-
per, we extend this proof to some quantum sys-
tems with hard-core interactions or purely re-
pulsive interactions. The proof applies for all
values of (P, p. ) for systems obeying Boltzman
statistics, and for all p and all p, & 28 for s-ys-
tems of bosons, where 8 is a real constant de-
pending only on the interactions.

We consider a system of identical particles in
.v-dimensiona1. Euclidean space R', interacting
through a two-body potential 4 satisfying the fol-
lowing properties: There exist real finite con-
stants a, c, and B with 0&g &c and B &0, such
that:

(A) C has a hard core of diameter a, i.e., 4(x)
=+~ for jx j

~ a; 4(x) is continuous for (x( &a; 4
is absolutely integrable for jx~ ~ c, i.e.,

fj„j,I 4'(x) I dx & +

Note that (A) allows an arbitrary growth of 4 in
the vicinity of the hard core. Spherical symme-
try is not assumed, except for the core.

(8) For any finite family (xo, ~ ~ ~, x„)of n+I
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