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states in the AN system does not rule out their existence. These states may be weakly coupled to the
~N system.

Thus the spin considerations in dual models and the examination of the constraints on the s-channel
resonances" do provide interesting information concerning the particle spectrum and the coupling pat-
terns. We can easily generalize our results to other systems as well as to particles with arbitrary
spin. These considerations and a more detailed discussion of the predictions of local duality will be
discussed elsewhere.
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Assuming constant but unequal asymptotic total cross sections a,(~) leads to a (lns)
shrinkage of the forward elastic peak. Moreover, under rather general assumptions,
do /dt exhibits an infinitude of oscillations in t as s ~, a result derived earlier by
Finkelstein within the Regge-cut model.

Recent Serpukhov data' are consistent with the
assumption that constant asymptotic values a, (~)
of the total K'N cross sections have been achieved
at about 30-GeV/c laboratory momentum. If this
assumption is correct, it follows that (i) the
Pomeranchuk theorem is violated, i.e. , o {~)
oo, (~), and (ii) the elastic cross sections dg, "/
dt increase like (lns)' in the forward direction as
s- . That is, one obtains directly from Pomer-
anchuk's discussion' forward elastic amplitudes
of the form

A(s, 0) =a lns+ib (s —~),

where we neglect the effects of spin. (Our nor-
malization is such that du"/dt = ~A(s, t) ~', b = b, is
proportional to the total cross section o, (~), and
a=a, ~+[a (~)-o,(~)j. Both a and b are real
constants with a c 0 and b &O.j Also, the unitarity
condition,

j dt{do"/dt) ~ o, ,
' & cr.

coupled with the (lns)' increase at f =0, implies
a (lns)' shrinkage of the forward elastic peak, as
has been emphasized independently by several
authors recently. ' Moreover, employing the
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A(s, t) = (a 1ns+ib)F(x) ((t~ &R, lns- ~), (3)

where x=(lns)'( —t). It is clear that the unitarity
relation (2) is satisfied provided the condition

I,
'

dxlF(x) ~'«.../. (4)

is maintained. Moreover, since A(s, t) is analy-
tic in t in the complex neighborhood of t =0, (~t~

&R), ' it follows that E(z) is an entire function of
z. To reconcile Eqs. (1) and (3), we must have

E(0) =1. Polynomial boundedness of A, ' Q(s, t) ~

& C ~s ~' ' as [s ~

- for ~t [
& R, imposes a, bound on

E~ as (z ~

- ~. Denoting the maximum value of
F(z) ~

on the circle ~z ~

=r by M(r), we obtain

M(r) &C exp(Tr'")Tr'" (r —~),

where T=
~

—t( 'I'. Finally, the reality condition
on A(s, t) below threshold, together with the re-
flection principle, require F*(z*)=F(z).

To utilize some helpful theorems from the the-
ory of entire functions, "' it is useful to consider
the order p of a function in terms of its maxi. —

mum circular modulus M(r):

p =- lim sup[In lnM(r)/Inr].

From Eq. (5) we find for E, p ~ z. Next we use
an extension of the Phragmen-Lindelof theorem
implying boundedness of a function in a. wedge of
angle w/u& by a, constant, given this condition on

the edges and a growth rate O(expr~) with p & w. '
For p & —,', the angle can be opened to 2~ for ~ = —,',
and boundedness along z =x & 0 [implied by Eq.
(4) ] coupled with I iouviile's theorem yields F(z)
= const throughout the plane, where E(z) = 1. But
this does not suffice to satisfy Eq. (4) whence we

Regge-cut model, Finkelstein has obtained an
explicit form for A(s, t) with the rather remark-
able property that it oscillates wildly with t in
the physical region (t &0) as lns- ~.' His result
for du/dt near t =0 oscillates with a frequency
proportional to lns when plotted versus (—t)'".
We shall show that this infinitude of oscillations
in t as lns- ~ follows independently of the hypoth-
esis of Regge cuts and can be obtained from rath-
er general assumptions within the context of the
canonical conditions of analyticity, unitarity,
crossing, and polynomial boundedness. We are
further led to conjecture that these four require-
ments are sufficient to impose the oscillations
in t at fixed s, given asymptotic total cross sec-
tions, O„which are constants independent of s
but not equal.

We begin with an Ansatz:

must have p ~ &. Combining the p inequalities,
p =2. Employing Hadamard's factorization theo-
rem" and the condition E(0) = 1 (0 & p & 1), F(z) is
determined uniquely by its zeros fz, ):

F(.) = rr [1-(./. ,)i.

(The z~ a,re enumerable and numbered such that

~z, ~
is a nondecreasing function of k. ) Also,

since p is not an integer, it equals the conver-
gence coefficient p, of the series Q„~z„~
where p, is the infimum of positive e's for which
the series converges. It is clear that I has an
infinite number of zeros, for if not, o. could be
zero in the sum, but o. & p, = &. If one assumes
that the zeros lie on the positive real axis (z =x
&0), the infinitude of oscillations in do/dt dis-
covered by Finkelstein follows immediately.
[To obtain closer connection with his work, we

note that if z, = ck then, since p, = 2, we must
have m = 2. Substituting in the right side of Eq.
( t), and assuming the zeros to be of minimum
order (two) consistent with Eq. (4), we obtain'
for z=x

s1nil (x /c)E (x)
( / )

~

Substituting E,(x) into Eq. (3), we recover Finkel-
stein's amplitude apart from a normalization fac-
tor s and the (usually dominant) Regge factor,
s' = exp( —x/lns), which (here) rema. ins equal to
unity over the peak width and many oscillations
of E,'(x). ]

Returning to the general problem, if we drop
the assumption that all the zeros lie along the
ray x &0, our only special assumption is the in-
itial Ansatz, Eq. (3). We shall need essentially
one more (see below) in order to prove a series
of results. Proceeding in steps, we remove the
zeros from the positive real axis, placing them
in an initially simple configuration (along the
negative real axis), then in increasingly com-
plex ones, showing at each stage that one cannot
satisfy the unitarity relation (4). Within the set
of configurations considered, an infinitude of
zeros must then lie along the physical ray x ~0.

I,et n(r) be the number of zeros in and on the
circle ~z ~

=r. The fact that p =-,' w integer implies
a good deal about the asymptotic behavior of
n(r) as r- ~. To be precise, '

n(r) =O(rp '') (all e&0 as r- ~),

n(r)eo(r~ ') (all e &0 as r- ~).

Our second assumption is that n(r) increases as
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some power P of r, n(r) =Xr a.s r- ~ with ~&0.
The conditions (9) and (10) suffice to show that
p-e &P & p+@, whence, letting e -0,

n(~) = zr ~ (r —;p = —,', x & 0).

Stage 1.—Assume that all zeros lie along the
negative real axis, z„=-r„. From Eq. (7),'

lnF(z) = Qln(1+z/r„),

=J dn(g) In(1+z/g) =z' . (12)

at +8,. From Eq. (7), at z =x& 0, we may write
F(x) =F,(x)F,*(x), where lnF, (x) is given by Eq.
(16). It is important to note that although there
are two cuts in the z plane, in the f plane the in-
tegrand in Eq. (15) for lnF, (x) has only one cut.
Therefore the contour deformations performed
in evaluating I", and F,* do not interfere with
each other. We obtain

lnF, (x)F,*(x)=2'., (cscpm)x~

x cos[p(m-8, )j (x —~). (17)

and lnF(z) is analytic except for a cut along the
ray at 8, including the zeros of F(z). Evaluating
atz =x~0,

lnF(x) = —xe ;8

draff~

f P-xe (15)

Regarded as a function of f, the integrand in Eq.
(15) is analytic in the g plane for any x &0 except
along the ray at —8, where there exists a, cut (al-
so providing for the branch point at g =0 induced
by the factor f~ for p = 2). Therefore, there is no
difficulty in converting the integral on g from one
along the positive real P axis to one along the ray
argP + 6

y allowing ready evaluation. The re-
sult is

lnF(x) = wA(cscpm)x exp[ip(w —8, ) j (x —~). (16)

Stage 3.—Place the zeros in conjugate pairs
along rays at arg~ =+ 0„ thereby satisfying
F*(z*)=F(z). There are now cuts in the z plane

The last equality is obtained by integrating by
parts, the integrated part vanishing at the upper
limit from Eq. (11), and at the lower since F (0)
c 0, nor is z =0 a limit point. One may, with neg-
ligible error, substitute the form (11) in Eq. (12)
to obtain the asymptotic result at z =x-+~,

lnF(x) = mX(cscmp)x~= wax'~' (x -+~).
Exponentiating Eq. (13) one sees that the condi-
tion (4) is violated. Hence, the zeros cannot be
transferred to the unphysical region x &0 to
avoid the oscillations at positive x without violat-
ing unitarity.

Stage 2. —Place the zeros along the ray arg~
=8„where w& 8, &0. [For the moment we ignore
the requirement, imposed by the condition F*(z~)
=F(z) and Eq. (7), that there be a conjugate set
of zeros along the ray argz = —I9„ i.e. , the set
{z,j={z,*jj. Then

In F (z) = g ln(1-ze *'~/~, ), (14)

Now, since p = 2 and m - I9, &0, the argument of
the cosine is less than 2m, whence

lnF(x)=B,x' ' (B,&0; x-~).
Equation (18) is inconsistent with Eq. (4), forbid-
ding the placement of the zeros along the rays at
+0, for 0,w 0.

Stage 4. —%e extend to 2n or 2n+1 rays at arbi-
trary angles, +0, , such that Tt ~ 0,-&0. There a,re
now 2n or 2n+1 cuts in lnF(z) and it is crucial
that no two of these (e.g. , the closest to the real
positive axis) isolate the physical region x & 0
from the remainder of the s plane. Passage is
allowed through a. cut-free region near the origin
where there are no zeros [since F(0)c 0 and the
origin is not a limit pointj. Also it is not essen-
tial that n, (r) = A,r~ on. all rays, but only on at
least one such ray. It is impossible that the ex-
ponent on any ray exceed p by Eq. (9). Rays with
exponents less than p can exist but contribute
negligibly to n(r) as r —~. Therefore, summing
over only rays with n, =h.p'~ as r-~, we find

lnF(x)=Bx' (B&0; x-~), (19)

where B =Q,.B, and B,=2m&, cos2.(m-8, ) &0 since
m ~ 0, &0. Again we find inconsistency with uni-
tarity.

Stage 5. —%e admit a finite number, N, of ze-
ros along the ray x&Q. Apply the above argu-
ments to

z
G(z)=-F(z) 1I

whence F(x) diverges as exp(x' ') except in the
neighborhoods of the zeros Again Eq.. (4) will
be violated.

Stage 6. —Augment the above configurations by
allowing an infinite number of zeros along the
positive real axis. Of the augmented set, if solu-
tions exist which satisfy Eq. (4), they must con-
tain an infinite number of zeros along x&0.
Moreover, there exists at least one solution ex-
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hibited by Eq. (8).
To summarize, if o, become constant but not

equal as s- ~, the elastic scattering amplitude
A(s, t) becomes predominantly real and the differ-
ential cross section do"/dt exhibits a (lns)'
shrinkage in t, the momentum transfer. The An-

satz (3) sufficed to show that A has an infinite
number of zeros. If all but a finite number of
these zeros occur at physical (i.e. , real, posi-
tive) values of the variable z = (lns)'( —t), then an
infinite number of oscillations occur in do"/dt
vs t as t decreases from zero, in accord with the
result obtained earlier by Finkelstein within the
Regge-cut model. Dropping the assumption of
real positive zeros, but assuming a power-law
asymptotic behavior of n(r), the number of zeros
in IzI & r, we showed that of all possible configu-
rations where the zeros are located on an arbi-
trarily large but finite set of rays radiating out-
ward from the origin, only those with an infinite
number of zeros along z =x &0 are consistent
with unitarity. Again we recover the infinite
number of oscillations in da"/dt exhibited by
Finkelstein's solution. We are led to conjecture
that these oscillations are a general feature of a
situation where o, (~) are unequal if one is to
maintain the usual requirements of unitarity, an-
alyticity, crossing, and polynomial boundedness.

I have benefitted from comments by R. J. Eden,
J. Finkelstein, D. Horn, D. Narayana, and H. T.
Williams. I especially thank R. Kraft and J. A.
Shapiro for stimulating discussions.

Note added in proof. —As expected, it is possi-
ble to remove the restriction that the zeros of
F(z) lie along a finite set of rays. The general-
ization to an arbitrary distribution of zeros (pro-
vided only that the limit of r ~n(r) exists as r- ~
[see Eq. (11))follows from a lemma due to Le-
vin: Let (z~) be the set of zeros of a canonical
product II(z) of which our F(z) given by Eq. (7)
is a special case]. Assume the limit of r ~n(r)
exists as r —~. Let II (z) denote the same prod-
uct except for a different set of zeros lz~') which

satisfy Iz&'I = IzI I
and largz~'-argz, I&a. Then one

can always select 6 sufficiently small such that
for arbitrary & & 0 and p &0, the inequality

I ln Ill (z ) 1
—1n I II (z ) I

I
& or ~

holds for all & not within an exceptional set of
circles C containing the zeros (z„) and 1z„'j.
Moreover, the sum of the radii b„of all circles
in C centered at Iz I &r satisfies r ~Q„"h, &q as r

This lemma allows us to replace an F(z)
with an arbitrary distribution of zeros by one
having its zeros on a finite set of rays with negli-
gible asymptotic error. Thus, for the general
case, our proof that there exists an infinite num-
ber of oscillations in do"/dt for constant but un-
equal o, (~) reduces to that already given for the
ray configurations of zeros of F(z).

J. V. Allaby et al., Phys. Letters 30B, 500 (1969).
I. Pomeranchuk, Zh. Eksperim. i Teor. Fix. 34,

725 (1958) J.Soviet Phys. JETP ~7 499 (1958)l.
A. Martin, in The International Conference on High

Energy Collision, III, l969, Proceedings, edited by
C. N. Yang et al. (Gordon and Breach, New York, 1970);
D. Horn, Phys. Letters 318, 30 (1970); R. J. Eden,
Phys. Rev. D, to be published. The (lns)2 skrinkage
and the Ansatz (9) were also discussed by the author
in earlier version of the present paper. For earlier
discussions see R. J. Eden, High Energy Collisions
of Elementary Particles (Cambridge Univ. , London,
1967); and T. Kinoshita, in' exspectives in Modenz
Physics, edited by R. E. Marshak (Wiley, New York,
1966).

J. Finkelstein, Phys. Rev. Letters 24, 172 (1970).
A. Martin, Nuovo Cimento 43, 930 (1966).

6R. P. Boas, Entitle Eunctions (Academic, New York,
1954).

~E. C. Titchmarsh, Theory of Functions (Oxford
Univ. , London, 1999).

K. Knopp, Theory of Functions (Dover, New York,
1947), Vol. II.

B. Ja. Levin, Distributions of Zeros of Zntire Func-
tions (American Mathematical Society, Providence,
R. I., 1964), p. 98.

1466


