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At infinite energy, we predict: (1) 0.«, , approaches infinity; (2) the ratio of the real part
to the imaginary part of the forward elastic amplitude approaches zero; (3) 0-,~/0«, ap-
proaches 2', (4) the width of diffraction peak approaches zero; its product with (T„, is a
constant. We give theoretical evidence based on massive quantum electrodynamics as
well as experimental evidence in support of these predictions, and a physical picture for
high-energy scattering.
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with u the third Mandelstam variable and g a pos-
itive constant, and

R =R, in)SI, (4)

With the construction of larger and larger ac-
celerators, it is hoped that the mysteries of
high-energy scattering will unfold in the near fu-
ture. It is therefore particularly urgent that the-
oretical progress will match the experimental
progress in stride. On the basis of our results
in quantum electrodynamics, ' ' we shall make in
this Letter a number of predictions on some of
the fundamental questions in high-energy phys-
ics.' While these predictions cannot be rigorous-
ly proven in a mathematical way, the reasoning
that leads to them is based on physical insights
learned from field theory, and are sufficiently
convincing to warrant attention. For clarity of
presentation, we shall first list these predic-
tions. Theoretical evidence in support of them
will follow next. Experimental evidence as well
as a physical picture for high-energy scattering
will be given lastly.

For any hadron-hadron scattering process at
extremely hign energies, we make the following
predictions:

Forward direction. —Let us denote the forward
elastic scattering amplitude by K(s, 0), where s
is the square of the c.m. energy of the system.
We predict:

with R, a constant independent of the energy.
Nonforward directions. —The usual diffraction

peak is expected for the elastic-scattering am-
plitude around the forward direction. Further-
more, 1.et I be the value of -t at which the first
dip occurs, where t is the negative of the mo-
mentum- transfer squared. We predict:

rv. ..=2m'p, '+O((in~S [)-'),

independent of the processes,

(5)

cr„=nR'+O'(ln(s )),

~.i/o:~. , = 2+O((»lsl) ').
In (5), p, =1.2197 is the first zero of j,(pm).
Thus

2m'P, ' =92.254 =35.92 mb (BeV/c)'.

(7)

Predictions (2), (5), (6), and (7) are model in-
dependent and a.re believed to be firm, while (1)
is a specific result of quantum electrodynamics,
and may be modified in strong interactions.

The above predictions mark a drastic depar-
ture from current concepts of high-energy scat-
tering. This is why we were slow in recognizing
its full significance when the relevant formula
was first found. ' After more than a year of de-
liberation, we now realize that the above predic-
tions constitute the only answer supported by all
theoretical evidences from field theory. We
shall next write down the basic formula and list
all the evidence.

At high energies, the fermion-fermion elastic-
scattering amplitude was found to be"

—,'im 's5„5,...Jdx~e' '"~(l—e ").
In (9), I is the mass of the fermion, 5» and

are Kronecker deltas of the spins, ~ is
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etc.

+ --- +

etc.

(b)

FIG. 1. The one-tower diagrams.

the momentum transfer, and A is related to the
Fourier transform of the asymptotic amplitude
due to the sum of one-tower diagrams illustrated
in Fig. 1. Specifically, if we expand (1-e ) in

(9) into a Taylor series in A, the term in (9) pro-
portional to A is the high-energy amplitude due

to the sum of the one-tower diagrams. In fact,
the A" term in (9) is the high-energy amplitude
for the sum of the N-tower diagrams. [Two of
the two-tower diagrams are illustrated in Figs.
2(a) and 2(c), and a three-tower diagram is illus-
trated in Fig. 2(b). j

Equation (9) was obtained by summing up the
leading terms in all multitower diagrams. Al-
though this method has no mathematical justifica-
tion, we believe that (9) is correct by the follow-
ing steps of reasoning:

(1) The one-tower diagrams with n loops are
the lowest-order diagra, ms which yield terms of
the order of s(lns)". ' By the optical theorem,
the corresponding cross section for the produc-
tion of n pairs is proportional to (1ns)" for large
s. Summing up these cross sections over n, we

get a total cross section of the order of s'(1ns)
where a= lla'm/32. ' ' The fa, ct that this result is
larger than any power of lns cannot be blamed on
the process of summing only the leading terms.
This is because the cross section for n-pair pro-
duction is always positive. By choosing n suffi-
ciently large, the corresponding n-pair produc-
tion cross section is already larger than any giv-
en power of lns. Thus the sum must also be larg-
er than any power of lns.

(2) To understand this large result [s'(ins) 'I,

etc.

FIG. 2. Examples of the multitower diagrams.

we must first recognize that the appearance of
the logarithmic factors is due to the creation of
low-energy pairs in the c.m. system. ' It there-
fore bears a strong resemblance to the familiar
infrared divergence in quantum electrodynamics.
We recall that a charged particle in an external
field can emit soft photons, and the number of
logarithmic divergences is equal to the number
of soft photons emitted. The scattering cross
section is thus infinite, and experimental resolu-
tions must be introduced to obtain finite answers.
High-energy scattering processes closely paral-
lel this situation in the following way: If the ki-
netic energy of the charged particle is T and the
ma. ss of the photon is X, then the maximum num-
ber of photons that the charged particle can emit
is kinematically limited to T/X. Only in the phys-
ical case of massless photons can an infinite
number of photons be emitted. In a high-energy
scattering process, the maximum number of
pairs that are kinematically allowed to be creat-
ed in the c.m. system is &u/rn, where w is the
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c.m. energy of one of the incident particles. In
the limit of infinite energy, this number is also
infinite. Thus the limit of ( —~ parallels that of
X-0. Since it is well known that the cross sec-
tion for a charged particle scattered by an exter-
nal field is more divergent than any power of lM
due to the emission of an arbitrary number of
soft photons, the cross section for high-energy
scattering must be larger than any power of ln~
due to the creation of slow particles in the c.m.
system, i.e., due to pionization. ' Thus we be-
lieve that the previously obtained answer of the
order of s'/(Ins)' is correct. In strong interac-
tions, the numerical value of a may be of the or-
der of 1.

(3) This result s'/(lns)' is not to be interpreted
as a violation of the Froissart bound. " Rather,
it ought to be regarded as a realization of the
strongly absorptive "potential" with a coupling
constant increasing with energy, as conceived in
Froissart's original paper. ' Thus, in a two-
particle scattering process, if the interaction
takes place at a sufficiently close transverse dis-
tance from the center of the target, the incident
particle creates slow particles in the c.m. sys-
tem and is lost to the beam. If the transverse
distance involved is large, the incident particle
does not necessarily create pionization products
and may survive. Mathematically, this is achieved

by including not only the one-tower diagrams but
also all of the multitower diagrams as well. The
resulting amplitude is (9). In the limit s —~ and

lx~~ =O(lns), we have"

~ - b~ -'~ae- (10)

where b and p, are real constants. In fact, p.

&2X, where X is the mass of the vector meson.
(4) The inclusion of the multitower diagrams is

not arbitrary, but has a physical basis. Since
(9) is in the form of the impact-parameter repre-
sentation, the quantity 1-e ~ is the opacity at
the distance and energy at which A is evaluated.
For a large fixed s, we may choose ~x~~ suffi-
ciently large so that A is very small. Then 1
-e -A. Thus at sufficiently large transverse
distances, A is proportional to the Fourier trans-
form of the high-energy scattering amplitude.
Since very little scattering occurs at this dis-
tance, the contribution of any diagram to A is al-
ways small. In fact, the diagrams with higher
thresholds in the t channel are in general expect-
ed to contribute less to A for large ~x~~. Thus
the important diagrams are those with two-vec-
tor-meson cuts in the t channel. The one-tower

diagrams are the leading diagrams of this kind,
and the inclusion of other diagrams of this kind
merely modifies the kernel X in Ref. 8. We
therefore conclude that (10) is correct when ~x~~

is large, although the constants a, 5, and p,

should be modified if the coupling is strong. If
we now fix ~x~~ and increase s, the right-hand
side of (10) increa. ses. This means that the in-
teraction extends into larger and larger trans-
verse distances as the energy increases. When
the energy is sufficiently high or the transverse
distance is not large enough, A becomes appreci-
able, and we may not approximate 1-e "by A.
This means that, no matter what happens to an
incident particle, it is, at most, taken from the
beam and cannot yield a large cross section that
increases as some power of the energy. In this
way the Froissart bound is obeyed. As shown in
Ref. 2, this exponentiation is achieved by the ex-
change of two, three„or more towers. It is in-
teresting to note that, while the amplitude from
the sum of one-tower diagrams is so large that
unitarity is violated, the amplitude from the sum
of two-tower diagrams is even larger. Fortu-
nately, these two amplitudes are of opposite
sign. In this way unitarity is restored.

(5) Finally, we emphasize that (9) has (i) all
leading terms, (ii) unitarity, (iii) analyticity,
and (iv) crossing symmetry.

The above considerations lead to a very dra-
matic physical picture. This picture is perfectly
general and holds for all hadron-hadron scatter-
ing processes. At extremely high energies, a
particle acts like a I orentz-contracted pancake
which can be roughly separated into the following
two regions: (i) a, black core (completely absorp-
tive) with a radius R given by (4) which expands
with energy [this core contributes the leading
terms in Eqs. (I), (2), (5), (6), and (7)]; (ii) a,

gray fringe (partially absorptive) which extends
further out and contributes to the next-order
terms in these equations.

It is perhaps instructive to compare the pres-
ent physical picture with those from the Regge-
pole model and the droplet model. In
each ease, a particle is pictured either as a
sphere or a disk, depending on the coordinate
system used. In the Regge-pole model, the disk
becomes larger and more transparent as energy
increases; in the droplet model, the properties
of the disk are independent of the energy at high
energies; in the present physical picture, the
disk becomes larger and more absorptive as en-
ergy increases. In particular, both in the Regge-



VOLUME 24, NUMBER 25 P H YSI CAL RE VIE%~ LETTERS 22 JvNs 1970

pole model and in the present physical picture,
the diffraction peak shrinks in width as energy
increases. However, the present picture differs
from both the Regge-pole model and the droplet
model in the high-energy behavior of 0„,, the
ratio of 0,&

to 0 „,, and also the position of the
dip in elastic scattering.

While much about the hard core is model inde-
pendent, it is not so for the gray fringe. For the
purpose of comparing with experiment, we must
remember that, for proton-proton scattering at
30 BeV, the quantity ln[s/(lns)'J is only about 1.3
if the energy scale is taken to be due to the rest
mass of the proton. Thus the contribution of the
gray fringe is comparable with that of the black
core in this energy range; indeed the black core
may not be black yet. Without a precise knowl-
edge of the gray fringe, our predictions cannot
be tested against the existing experimental data.
For example, in view of our results from quan-
tum electrodynamics, we can take A to be of the
form (10). With this assumption, the contribu-
tion from the gray fringe can then be obtained
precisely. Instead of dwelling on the possible
assumptions, we shall briefly comment on some
of the important aspects in the trends of high-en-
ergy experiments.

Total cross sections. —The total cross sections
of v -p, m n, K -p-, and K -n have all become
energy independent in the region from 30 to 65
BeV." No upward trend is noted yet, although
the experimental data may be in agreement with
slowly rising cross sections. '

The ratio ReSR(s, 0)/Im%(s, 0).—This ratio is
still negative at 25 BeV for both m'-p" and p-p"
scattering. For both the m'-p and m -p cases,
there is a definite trend for this ratio to rise
above zero The t.rend for the p-p case is not
well established.

The product I"o«, .—For proton-proton scatter-
ing at 19.2 BeV, this product is 39.5 mb (BeV/
c)', ""which agrees quite well with (8). Since
the diffraction peak continues to shrink" at 70
BeV, the agreement ought to improve at this en-
ergy.

The ratio o„/o„,.—Experimentally, in the re-
gion 8-20 BeV, this ratio is approximately 17 '
for both m'-p and v -p scattering, and 26% for
P-P scattering. " By using the model of quantum
electrodynamics, the terms of the orders of
ln~ &

~
and 1 in both (2) and (6) can be obtained ex-

plicitly. These terms are positive for cr„, and
negative for g,&. As a result, at intermediate
energies this ratio cr,~/v„, is much smaller than

—„ its value at infinite energy, At 20 BeV, this
ratio is estimated to be very roughly in the neigh-
borhood of 20%.

In conclusion, we emphasize the uniqueness of
the present physical picture from our knowledge
of high-energy behavior in field theory. Con-
frontation with the experimental data in the next
few years will be most exciting.
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The consequences of the assumption that the imaginary parts of the direct-ch~»el
helicity amplitudes vanish in the forward (backward) scattering if the crossed I; channel
(u che»el) is exotic are examined in the case of meson-decuplet scattering. Confining
ourselves to a limited energy region above the threshold, we show that the solutions of
the set of equations provided by different external helicities predict the existence of cer-
tain patterns of octet and decuplet baryons degenerate in mass and having spin and pari-
ty assignments 2

Recently several authors" have attempted to predict "exchange degeneracy" patterns for hadronic
trajectories on the basis of crossing, SU(3) symmetry, and duality. The scattering amplitude is as-
sumed to consist of two parts: (1) a primarily diffractive background, and (2) a resonant part, the
imaginary part of which is expressible at high energies in terms of Regge trajectories in the crossed
channels. Hence if a particular scattering amplitude is characterized by internal quantum numbers
for which no resonances exist, the Regge trajectories in the crossed channels must exhibit exchange
degeneracy so that the corresponding imaginary parts cancel.

In the present note, we investigate the consequences of duality in a local energy region in the case of
of the reactions P+D-P+D, where P and D represent, respectively, the octet of pseudoscalar me-
sons and the decuplet of ~ = 2' baryons. Following Mandula, Weyers, and Zweig, ' we assume that
there is a region of s and small t on the one hand, and a region of s and small u on the other, within
which the imaginary part can be calculated in two alternate ways, in terms of direct-channel resonanc-
es or in terms of Regge trajectories of the crossed channels. Therefore, if we select the s-channel
reactions so that their t or M channels are characterized by exotic quantum numbers (viz. , 27 in the t
channel, 27 and 35 in the M channel), the imaginary parts due to s-channel resonances must add up to
zero. We consider a set of direct-channel resonances degenerate in mass but with different spins and
parities and examine the constraints on their coupling constants implied by the above requirement in
the forward and the backward scattering. We show by including considerations of spin that the parti-
cles on leading trajectories must be accompanied by daughters with prescribed ratios of coupling con-
stants between the parent and the daughter particles. We discuss the general pattern of the nontrivial
solutions and compare the results with experiments in the case of nonstrange baryons.

The imaginary parts of the six independent s-channel helicity amplitudes free of kinematic singulari-
ties can be written as

ImGo~oq(s, 9,) =K(s) Q X " (2L'+1)' '(2L+1)' 'C(L'p J;Op)C(L2J; OA)yn'(L')}tn. (L)dip (9,), (1)

where R characterizes the irreducible SU(3) representation of the crossed t or u channel and Xn. are
the elements of the corresponding crossing matrix. L, X (L', lJ. ) denote the orbital angular momentum
and helicity of the initial (final) state, and K(s) is a kinematic factor. The }t 's are related to the par-
tial widths through

(2)

where I' is the total width and I'» the partial width of a resonance of angular momentum J and mass


