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We discuss the response of a crystal in the presence of a neutron distortion in the first-
order self-consistent approximation and we stress the importance of the self-consistency
condition. The resultant integral equation for the phonon energies is solved by direct
matrix inversion instead of truncating a series expansion. Numerical results are pre-
sented for solid Ne and fcc He at 10.0 and 11.5 cm /mole.

In his book Choquard' has shown how to obtain
thermodynamic derivatives of the self-consistent
free energy. In spite of the pseudoharmonic
nature of the theory, there are additional terms
which occur because of the self-consistency con-
dition imposed upon the frequencies. Similarly
Gotze and Michel' in their treatment of elastic
constants have shown that in the first-order self-
consistent approximation the expression for the
self-energy Z can be represented diagrammati-
cally by the equation shown in Fig. 1. The first
term represents the usual thermodynamic self-
consistent frequencies. The remaining terms,
which yield a shift and a width, represent an
iterative solution to an integral equation, and,
just as for the compressibility discussed by
Choquard, they occur because of the self-con-
sistency condition imposed upon the frequencies.
Applications of the self-consistent approximation

I

to elastic constants' and neutron-scattering pho-
non spectra' ' in noble-gas solids (mostly heli-
um) have made use of up to the second term only
in Fig. 1. But recent calculations of compres-
sjbjljtjes and elastjc constants jn those soljds8-xo
have shown that such inconsistency can be seri-
ous (except for low T and high mass) and grows
worse with increasing temperature and decreas-
ing mass.

In this Letter we express the self-consistent
self-energy of Fig. 1 in a fashion that can be
implemented numerically and we obtain results
for phonon spectra in fcc neon and helium at high
pressures.

In studying the response of a lattice to neutron
scattering we shall be concerned only with the
one-phonon Green's function G«. (Q, 0). In par-
ticular we are interested in the peaks of its im-
aginary part
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where Q and 0 are the momentum and energy transferred, respectively. Generalizing the method of
Gotze and Michel' in the first-order self-consistent phonon approximation, 4 and I' are given by the
following equations:
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FIG. 1. Phonon self-ene rgy.
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and

and
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Here nz = [exp(@cd&/kT) —1] ', M is the mass of
each ion, (Rz} represent the equilibrium lattice
vectors, rd~(q) and e„(Q,J) represent the frequen-
cies and eigenvectors (polarization J) of the self-
consistent equations, "and 4 &&...are the smeared
force constants. One should note that 5Z, W,
and C are complex quantities. The complex in-
verse [1+C] ' in Eq. (2) is taken with respect
to the tensor multiplication implied in that equa-
tion and the unit tensor defined by Eq. (3). One
should note that this inverse can be expressed in
the series

(I +C)-'= I-C+C'-C'+ ~ ~ ~,

provided it conver ges. When substituted into
Eq. (2), we obtain the diagrammatic representa-
tion in Fig. 1 starting from the second diagram.
In the case of helium, the series often diverges
and one has to solve for the inverse by exact

matrix inversion. The results in this Letter
have been obtained by this latter method.

In the [100] direction, the Green's function

G«, is diagonal. The neutron frequencies are
obtained by searching for the peaks of ImG«. (Q, Q)

as a function of Q. The treatment of the princi-
pal value and delta function in Eq. (4) has been
described elsewhere. ' The number of points
used in the scan of Eq. (4) varied over 256, 2048,
and 6912 points depending on the convergence
which was set to 1% maximum in the location of
the peaks. "

Neon. —The results for neon in the [100] direc-
tion are depicted in Fig. 2. The calculations
were carried out using a (13-6) Mie-Lennard-
Jones potential y(r) with nearest-neighbor inter-
actions:
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FIG. 2. Phonon energies in the [100]direction in Ne. For longitudinal phonons near the zone boundary we have
found a lower second peak in the Green's function which we indicate by a cross {see Ref. 12).
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with m = 13 Ro 3-029 A, and e = 73.10& 10
ergs. This potential was found to account suc-
cessfully for a number of thermodynamic prop-
erties. " The experimental points are those of
I.cake et al. ' In this figure the curve labeled
v results from the first diagram of Fig. 1 and
it represents simply the thermodynamic frequen-
cies obtained from the self-consistent equations. "
Curve Q~'~ represents the peaks of a G(Q, Q~'~)

whose self-energy goes up to the second diagram
only in Fig. 1. It is equivalent to the work of
Koehler. ' Curve 0 represents the peaks of the
Green's function in the first-order self-consis-
tent theory as determined from Eqs. (2) and (4).
We should note that in the long-wavelength limit
only the slopes of the 0 curve give the same
bulk modulus as the one obtained by numerically
differentiating the first-order self-consistent
free energy with respect to volume.

Helium. —Calculations were also carried out
for" fec He, In order to deal with the singularity
of the potential at the origin" one can look for a
region of stability of the self-consistent solutions
with respect to a variation of a cutoff of the po-
tential away from the core. Our results for He'
are for molar volumes of 10 cm' at 20 K and
11.5 cm' at 16'K where He is in the fec phase.
Thus we find that at 10 em the free energy is
stable to one part in 10' when the cutoff is varied
from 0.17R, to 0.45R,. At 11.5 cm' the stability
is one part in 8X10' for a range of 0.15Ro to
0.4Ro. Our investigation into the cutoff problem
shows that for these volumes short-range cor-

relations may safely be neglected as far as the
self-consistent approximation is concerned. "

The results for He' are shown in Figs. 3 and 4
for 10.0 and 11.5 cm'jmole, respectively, in the
[100]direction. A 12-6 Lennard- Jones potential
was used with Ro 3 869 A and e = 14.10' 10
ergs. The 0 ' curve is equivalent to the work of
Glyde and Cowley' and of Horner' in the compu-
tation of the self-energy. In the case of He, the
discrepancy between the two theories is much
more decisive both quantitatively and in the
shape of the dispersion curves than in Ne, near
4'K. One should note that in the quasistatic
limit the slopes of the 0 '~ curves give abnormal-
ly low bulk moduli and velocities. " In fact, at
11.5 cm'/mole the ela.stic constants obtained by
keeping only the second term in Fig. 1 were
found to be slightly negative.

Since 0 ' contains a pronounced point of in-
flection, the phonon spectrum based on a truncat-
ed self-energy could lead to an anomalous OD
curve (with a maximum) at low T. Such behavior
is not exhibited by a spectrum based on the com-
plete first-order self-energy. This result may
carry over to other volumes and phases. ""In
any case, a reliable study of this question would
require rather detailed numerical work. "

We have applied the one-phonon Green's func-
tion to the neutron-scattering phonon spectra in
neon and He' as predicted from the first-order
self-consistent approximation. We stress that
we have presented the results of the first-order
theory. Higher-order corrections to the free
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FIG. 3. Phonon energies in the [100] direction in fcc He . The slopes of the lines come from isothermal elastic
constants obtained independently (see Ref. 10).
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FIG. 4. Phonon energies in the [100] direction in fcc He .

energy, such as the improved self-consistent
theory" or Choquard's full second-order theory,
will contribute corresponding corrections to
our results.
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Choquard for an enjoyable visit to Rutgers Uni-

versity which enabled us to discuss the neutron
scattering problem with him.
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