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We prove that the free energy of an arbitrary monomer-dimer system is analytic in the
density and temperature for nonzero density, and hence that the system has no phase

transition. This result can also be used to locate the z =¢

2B poots of the Heisenberg

ferromagnet or antiferromagnet at high temperature.

From time to time the monomer-dimer (MD)
system is used as a model of a physical system,!
but primarily it is interesting as the phototypical
lattice statistical mechanics problem. Although
the pure dimer (PD) problem can be solved for
planar lattices,? nothing was heretofore known
rigorously about the MD problem because no
theorems and no exact solutions were available
(except in one dimension where the problem is
not very interesting).

In this note we present the outline of a complete
theory of the subject which allows us to answer
most questions of physical interest. Essentially,
the only question left unanswered is the nature
of the singularity, if any, as we approach the
PD limit, the answer to which is surely lattice
dependent and, therefore, complicated. Gaunt’s
series expansions® offer nonrigorous but con-
vincing evidence of the existence and lattice de-
pendence of this singularity. Otherwise, our the-
orems show that the free energy is analytic in
the monomer density p and the temperature T
=(kB)~. This had been conjectured before for
specific lattices on the basis of numerical calcu-
lations.® We can also show that the correlation
functions exist and enjoy the same analyticity
properties. An appropriate variable in which to
form a power series convergent for all p >0 is
easily derived. In short, all that remains to be
done in any specific problem is to use conven-
tional graphical expansions to calculate coeffi-
cients on a computer. Admittedly, this proce-
dure is likely to be impractical for small mono-
mer densities unless one has a clear idea of the
singularity at p=0.

We also show how the MD theory can be used
to locate the z=e?P" roots of the Heisenberg and
Ising ferromagnet and antiferromagnet at high
temperature (% is the magnetic field).

To formulate the problem consider a lattice L
consisting of N vertices and a set of (§) non-neg-
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ative bond weights w;,. We can introduce T by
setting w, ;= exp(-gJ,,) for suitable real J;,. L
is said to be articulated if the vertices can be
numbered so that wy,, w,s, Way, =+, Wy_y 5 #0.
L is said to be bounded by W if 2J,w,, < W for
all 2. Dimers can be placed on pairs of vertices
so that each vertex has at most one dimer. The
weight of a covering by d dimers on (g, b), (c,d),

s isw,,w,, -, and Z, is the sum of these
weights for all possible d-dimer coverings. Un-
covered vertices are regarded as being occupied
by monomers having an activity x, so that the
total MD partition function is

M
P, (x) =dZ%deN‘2d, (1)

where M is the largest integer in N/2. Let P,
be the partition function for the lattice with ver-
tex N (and its edges) removed and let P,.* be the
same when vertices N and 2 are removed. The
key equation is
N=1

P, (x)=xP /(x) +k:1wk'NPL," (x). (2)
For N=1 or 2 the roots of P,(x)=0 are imagi-
nary. We are led to the following theorem whose
proof involves a simple modification of the clas-
sical inductive argument (on N) appropriate to a
Sturm sequence and which can easily be supplied
by the reader. The proof of the bound on the
roots does not appear to be standard but it re-
quires merely an addition to the inductive hypoth-
esis which, in toto, reads, “For all lattices of
order N, (a) Theorem 1 is true; (b) for x=ia
and a=2W"% P, .(x)/P, (x)=1i6 with 6 >-W~12”

Theorem 1.

P, (x) =in(1‘ +b,), N even

= #1106 +0,), N odd, 3)
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where 0 <b,<4W. The roots of P, =0 interlace
those of P,,=0 and, if L is articulated, the roots
strictly interlace and hence are simple.

The significance of this theorem is that InP L(x)
is analytic in the right-hand plane and hence that
no phase transition can occur. The simplicity of
the roots will be needed later in connection with
the Heisenberg and Ising models.

Corollary 1.

M-d+1)(d+1)

2InZ,z2InZ,_, +InZ,,, +In 0 —d)d

(4)

This is merely a statement of Newton’s inequali-

ty.* Its meaning is that even for a finite system

the free energy per unit volume is a strictly con-

vex function of the monomer (or dimer) density.
The grand free energy per unit volume is

-BF=N"*InP, (x), (5)

and it is clearly analytic away from the cut,
(-2iWY2, 2iW'?), To expand F near zero mono-
mer density, the natural variable to use is «
=x~'. As F has singularities in the u plane along
(2/2W*/2, i) and (-i/2W'/2, —i»), a power series
in # will have only a finite radius of convergence.
To remedy this use s=(2W"%u) ~'[ -1+ (1 + 4Wu?)"/?]
or W%y =s(1-s?)"! which maps the unit s disk
conformally onto the u plane less the cuts. Thus
one constructs the usual power series in #, re-
arranges in powers of s, and convergence for
all real u is guaranteed.

The monomer density is defined as

p=xN"'d1nP  (x)/dx. (6)

It is easy to prove from (3) the following:
Theorem 2. The roots of dp/dx=0 lie in

D={x:|x| <2W'2, 1/4 <argx <37/4
and 57/4 <argx <Tr/4}.

The significance of this theorem is that the in-
verse function theorem guarantees a neighbor-
hood of the positive p axis in which F, considered
as a function of p, is analytic.

The dimers can also be thought of as hard-core
particles on the line (or covering) graph of L.
For example, if w,, =1 on the edges of a planar
hexagonal lattice and zero otherwise, the MD
problem is the same as the nearest-neighbor ex-
clusion problem on a Kagome lattice. Our theo-
rem tells us that there is no phase transition on
the Kagome lattice as there is for the square
lattice.? Using this point of view, however, we
can modify the Ginibre-Penrose method® to yield

a lower bound on the compressibility,

Bx ~'=~gpaF/op = p* xdp (x)/dx] . ()
By this method one first derives the inequality

dZdz<Zd—1{(d+1)Zd+l+2WZd}’ (8)
and then

Bx "t <3p?[1+2Wx~2]/(1-p). 9)

(We wish to thank Professor J. Lebowitz for cal-
ling our attention to the fact that by treating the
dimers as hard-core particles the theorems of
Ref. 6 independently yield the same qualitative
conclusion as Theorem 2, namely that F is real
analytic in p.)

Other bounds which can be derived directly
from (3) are

3p/(1-p) <px ™! <zp*W/(1-p)*¢,
px) =[1+Wx~2]"1,

(10)
(11)

Turning now to a generalization of Theorem 1,
we may consider a system in which placing a
monomer at vertex ¢ entails a Boltzmann factor
mx, (instead of merely x) where m, >0, all i,
and are regarded as fixed and x; is the (variable)
activity at site i. In this case we say that L is
bounded by W if m, ™20, W, ,m,~* <W for all i.

Theorem 3. If x,=x for all 7 then Theorem 1
is still true. Otherwise, if Re(x,)>0, all i, or
Re(x,) <0, all i, then P,(x,, -+, x,)#0. The
proof is an adaptation of that for Theorem 1.

If w,; depends on temperature, as aforemen-
tioned, analyticity in x does not trivially imply
analyticity in B. The problem is similar to that
for the Ising ferromagnet where the circle theo-
rem holds.” Following the sophisticated analytic
tour de force of Lebowitz and Penrose,? however,
we can likewise show that for the MD problem
there is analyticity in (x, g) for x in the right-
hand plane and g real and positive. As they did,
we can also establish the existence of correlation
functions. These statements are, of course,
trivial for a finite system. The difficulty lies in
proving them in the thermodynamic (N- ) limit.
To our knowledge, no one has ever carried out
the proof of the convergence of the virial series
for the MD problem, but this can be done in a
manner parallel to that for the Ising model. Ham-
mersley has, however, proved the existence of
the thermodynamic limit.°

The analogy with the Ising circle theorem is
not fortuitous. Fisher'® has shown how a zero-
field Ising model can be put into one-one corre-
spondence with a PD problem, and with non-neg-
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ative bond weights in the case of a ferromagnet.
He did not show how to include a magnetic field,
but that lack is easily filled with the result that
the Ising model becomes a MD problem with x
=(z-1)/(z+1), z=¢?P"  The only difference is
that not all sites are allowed to have monomers
(i.e., m;=0 or 1 in the above) so that Theorem 3
is called into play. In brief, our analysis start-
ing with (3) and using the notion of a Sturm se-
quence provides a completely independent proof
of the circle theorem (note that |z|=1 is equiva-
lent to x imaginary).

On the other hand, we can start with the circle
theorem and derive Theorem 1, except for the
statement about the simplicity of the roots. For
generality, consider a spin- 3 Heisenberg Hamil -
tonian: H=H,+H,; H,= EJijsizsj,; H, =arbitrary
Hermitian quadratic form in {s;,, s;,}, and let

Z=(eB" +e~8")~ " Tr[exp(-pH) exp(26h2us;, ).

Next, expand e~ ## in a Taylor series, take the
trace term by term, and express the result as an
even polynomial of order N in y = (e2%%-1)/(e?P*
+1). If ¢,, (B) be the coefficient of y** in Z then
¢,,(B)= B*Z, +7,,(B) where Z, is the k-dimer
partition function on a lattice in which w,,=J,,.
The significant fact, which the reader can easily
verify, is that 7,,, while complicated, is of high-
er order in B than k. Hence,

Z=t"%P,()+R (D), (12)

where ¢£2=gy® and R, (¢) is a polynomial whose
coefficients all vanish with 8. If H,=0 (Ising
model) and J;; >0, the circle theorem tells us
that the roots of Z (in ¢#) are imaginary for all
positive B. It is easy to prove that the leading
polynomial, PL(t), must necessarily also have
this property and thus we have another proof of
most of Theorem 1. Conversely, if the roots of
P, (t) are imaginary and simple, Z will also have
this property for sufficiently small 8. If we also
note that negating the sign of all J;, is the same
as changing f to if in P, we have the following:
Theorem 4. Let H be the Hamiltonian of a Hei-
senberg ferromagnet (J,,>0) or antiferromagnet
(7,; <0) such that the lattice of {J,,} is articulat-
ed. Then there exists a §,>0 such that for g<g,
the roots of Z=0 in e2?* are (i) on the unit circle
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for a ferromagnet and (ii) on the negative real
axis for an antiferromagnet.

Theorem 4 complements Suzuki’s proof'! of the
circle theorem for sufficiently large g but, un-
like his hypothesis, we are not obliged to place
any constraint on the off-diagonal part, H,. As
in Suzuki’s case, we are obliged to state that we
can give no bound for B, which is independent of N.

After this work was completed, we received a
preprint from T. Asano’ which contains a com-
plete proof of the circle theorem for the aniso-
tropic Heisenberg ferromagnet. Consequently,
the ferromagnetic part of our Theorem 4 is ob-
solete.
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