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on experimental conditions, such as the antenna
pattern of the probes and the generating frequen-
cies. This dependence on the experimental con-
figuration is due to the fact that the echo is the
sum of the electric fields of perturbed free-
streaming electrons whose distribution depends
in detail upon the interaction between the elec-
trons and the fields of the probes. The ballistic
theory of the klystron' is cur rently being used
to investigate these effects.

In summary, we have experimentally found
longitudinal electron wave echoes whose wave-
length-frequency relationship is consistent with a
theory which is ballistic in nature. Because of
the analytic simplifications afforded by neglect-
ing resonant contributions, this echo may be
particularly useful as a diagnostic.
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THERMAL CONDUCTIVITY OF A He'-He' MIXTURE NEAR THE SUPERFLUID TRANSITION
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Measurements are presented which show that the thermal conductivity ~ in a He -He
mixture is finite but singular at the superfluid transition temperature Ty. From this it
can be concluded that dynamic scaling predicts a divergent mass-diffusion coefficient for
the normal phase. Through a semiempirical approach, ~ for the mixture is shown to be
consistent with the divergent v for pure He .

We wish to present high-resolution measure-
ments of the thermal conductivity K for a solu-
tion of 15 mole% He' in He' (1'~ =1.946 K) which
show that z is finite but singular at the superflu-
id transition temperature T~. This work was
motivated by the successful detailed explana-
tion' ' of the divergence at iz of v for pure
He' I' ' by dynamic scaling. From the absence
of a divergence of z at 1'z and the hydrodynamics
applicable to these mixtures' it can be concluded
that simple dynamic scaling arguments in this
case make no prediction' about the thermal con-
ductivity, but rather pertain to the divergence of
the mass diffusion coefficient for the system in
the normal phase. Nonetheless, by means of a
reasonable semiempirical expression for ~ in
mixtures it has been possible to compare the sin-
gular contribution to ~ with the divergent x in
pure He'. Using this semiempirical approach,
the results for the two systems are found to be
consistent in magnitude and temperature depen-
dence.

The measurements were made by the method

used previously' in the determination of K for
pure He', with the exception that the sample
length was reduced to 10 ' cm. Sev'eral power
densities were used; but the most extensive re-
sults were obtained with a heat flow Q =—6 x10
W/cm'. Some of the values of K as a function of
the absolute temperature T are shown in Fig. 1.
More data over the temperature range indicated
in the figure by the horizontal bar near the tran-
sition are shown on expanded scales in the in-
sert in Fig. 1.

For T &Tz, the measured thermal conductivity
can be described by the two-fluid hydrodynamics
of mixtures. ' " It is an effective thermal con-
ductivity ~,ff which is a combination of the diffu-
sion coefficient, the thermal diffusion, and the
thermal conductivity in the absence of impurity
currents. If ideal dilute solution theory applies,
K g1 ~ c ' (c is the mola. r concentration of He ).
The ratio between v, ff c as measured here for c
=1.5~10 ' and as measured by Ptukha"'" at c
=1.3 &10 ' varies between 2.5 and 3 over the
temperature range covered by the present data
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FIG. 1. The measured thermal conductivity ~ as a
function of the temperature T. The solid line rep-
resents a smooth, regular function of T. Measure-
ments over the range indicated by the horizontal bar
are shown in the insert. The solid line in the insert
is the same regular function of T as that shown in the
main figure.

below Tz. The deviation of this ratio from unity
may be ascribed primarily to deviations from
ideal solution behavior. For 1.5 K&T ~Tz, K,f f
is expected to be an increasing function of T. Al-
though it is not likely that there is a strongly di-
vergent contribution near T~ to K,ff, a weak sin-
gularity in K,ff as T~ is approached from T & T~
cannot be ruled out on theoretical grounds. " In
order to search for a possible singular contribu-
tion, a smooth line, representing a regular func-
tion of T, was drawn through all the data below

Tz in Fig. 1, and was reproduced in the insert.
It is evident from the data that any singular con-
tribution to K,ff for T &Tz is smaller than the ex-
perimental error and does not exceed 0.2% of
K f f over the temperature range covered by the
measurements (T~-T &10 ' K).

For T & T z, the thermal conductivity decreases
with increasing temperature. It is evident from
Fig. 1 that K for He I is singular as T approaches
Tz from higher temperatures. In order to show
the temperature dependence of K near T z more
clearly, additional data over the temperature
range indicated by the horizontal bar in the in-
sert in Fig. 1 are shown on an expanded scale in
Flg. 2.

Before proceeding to the comparison of the
present results with dynamic scaling and the
measurements for pure He', it is important to
consider the effect of the concentration gradient
due to the temperature gradient upon the mea-
surements. For He II, one has for ideal dilute
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FIG. 2. The measured thermal conductivity K as a
function of T-Ty. T and Ty are the average sample
temperature and the average transition temperature.
This figure covers the range indicated by the horizontaI
bar in the insert of Fig. 1.

solutions' '"
Vc/VT = (M, /RT-)o« —=-0.20 (K)

where R is the gas constant, 04, is the entropy
per gram of pure He', and M4 is the molar mass
of He'. We have estimated the effect of Vc upon
the measured K for He II, using ideal solution
theory, by a method similar to that used by Kha-
latnikov and Zharkov, ' and found that for the ex-
perimental conditions used here the measured K

differs from that expected in the limit of zero
concentration gradient by less than 0.1 /o.

Very near T z, the interpretation of the mea-
surements with nonzero heat current is more
complicated. The finite K results in a nonzero
V T even for He II, and a He II-He I two-phase
system is expected to exist over a relatively
large temperature range. In the absence of a
concentration gradient this range would just span
a temperature interval T„-T„where T„and T,
are the hot and cold end temperatures. However,
the existence of a nonzero Vc results in a transi-
tion temperature gradient VT~, and VT~/Vc
=1.6 K." Then, for ideal solutions, VT~ =—0.32
xVT. The two-phase region should exist over a
temperature interval (T„-T,)-(Tq„—Tz, ). The
apparent discontinuities in dv/dT which are evi-
dent in Fig. 2 indicate that such a two-phase re-
gion did indeed exist over a range of (2.0+ 0.2)
x10 ' K at a heat flow Q of 6x10 ' W/cm'. The
total measured T„-&, under these conditions was
4.12&10 ' K. Thus we estimate that for the real
solution VT ~/VT =0.52+ 0.05, or only somewhat
larger than predicted for ideal solutions. When
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discussing the sz&~lar & for He I, we shall limit ourselves to the single-phase region, and consider ~

as a function of T-Tq, where T is the average sample temperature, and Tq the average transition
temperature. A small curvature correction which compensates for the temperature dependence of K

and the nonzero TI, -T, (less than 0.2 /0 of &) was applied to the He I data.
In order to examine the measured thermal conductivity from the viewpoint of dynamic scaling theo-

ry,"we consider the expressions for the normal modes in mixtures, as given by Griffin. ' These are
combinations of mass-diffusion and heat-conduction modes with diffusivities D& and D& given by

—,'((1+Z,)D+D + [(D-D )'+2ZQ(D+D )+Z,'D']'"j,

where the positive sign yields D& and the negative sign gives D&. Here D&= &p 'C~, ' is the thermal
diffusivity, p the density, C~, the heat capacity at constant pressure and concentration, and D is the
mass-diffusion coefficient. " The parameter Z, is finite, vanishes for c =0, and can be obtained by
comparing Eq. (2) with Eq. (15) of Ref. V. One of D„and D~ is predicted by dynamic scaling to di-
verge asymptotically as u, $, where the coherence length g

-p, '. Here u, is the second-sound veloci-
ty, and p, the superfluid density. The other of D„and D~ is expected to be less singular. Since D~
is known from Ref. 12 and the present experiment to be finite at Tq provided c &0, it follows from Eq.
(2) that a divergence of Dz or Ds can be obtained only if D diverges A.divergent D and finite Dr re-
sult in a divergent Dz and a finite D~.' Hence, for c &0, we expect »»& sufficiently near T~. There-
fore one can expand Eq. (2) in terms of Dr/D, and

D~ =(1+Z~)D +Z2(1+Z2) 'D r+Z(21+ Z)2~Dr2D ~+ 0(Dr3D 2) + ~ ~ ~,

D~=(1+Z2) ' D-rZ, (1+ Z)2Dr'D '+0(Dr D )+ ~ ~ ~ .
(3)

(4)

For c&0, jt follows that

D~-D; DI, -D (5)
Thus, simple dynamic-scaling arguments make
a prediction about the divergence of D, but can-
not yield the behavior of D~, contrary to the
statement in Ref. 3.'

Since dynamic sealing does not provide a spe-
cific prediction with which the present measure-
ments can be compared, we shall use a more
empirical approach in order to obtain a reason-
able functional form for z. For T &Tz, we can
attempt to extrapolate from finite c to the known
behavior at zero concentration. I.et us write

v=a(c)/c[l+g(e, c)],

where a(c) =—Kzc (v~ is the thermal conductivity
at T q), and where g is a general function of e
=—(T-T~)/T~ and c. We shall now assume that
for sufficiently small c, dilute-solution theory
applies for He II even at Tz, and that for larger
concentrations the deviations of z~ from the di-
lute-solution prediction are a regular function of
c. In that case, Eq. (6) shows explicitly the ex-
pected concentration dependence as c vanishes,
and for c &0, a(c) is a regular function of c." We
now consider the limit of z for e &0 as c vanish-
es. In order to obtain a finite z, one needs at
constant e & 0

g(c, c) - (I/c)f(e),

and for small concentrations

K =—a[c+f(e)] '; f(e) &0 for e &0. (8)

For sufficiently small c, Eq. (8) must approach
the dynamic-scaling prediction" and experimen-
tal measurement' for pure He', and we expect

Iim [a(c)f '(e)]=ApC, u, (,
g ~Q

where A is a numerical constant of order unity.
We suggest that even for c&0 it is reasonable to
compare af ' with pC~, u, ). In this case,

—.af 1 [y 1 g 1] 1

= [a(c)/a(0)]ApC~, u, ). (10)

At Tz, ~, diverges. Experimental values of v, for
e & 0 are shown in Fig. 3. Also shown in Fig. 3 as
a solid line are the results for z of pure He', '
which are known to agree with dynamic scaling. "
In this ease, a„'=0 and a, =K. It is evident that
the dependence of x, upon e for the mixture is

. rather similar to that found for K in pure He'. At
the same value of e, x, is larger than v for He'
by a factor of about 8. We estimate for ideal so-
lutions, "" and on the assumption that p, /p and g
at the same value of e are independent of c, that
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pC~, u, $ for c =0.15 is not much different than
for pure He'. In addition, from the experimental
data for He II, a(c)/a(0) —=3 for c =0.15. Thus,
the amplitude of the divergence for ~, differs
from the amplitude estimated from the pure He'
results or from Eq. (10) only by about a factor of
3. We therefore conclude that both the amplitude
and temperature dependence of v, are reasonably
consistent with the He' results and Eq. (10) even
for c&0. It would be interesting to see if the be-
hav.'or of Eq. (10) and Fig. 3 could be obtained by
a detailed calculation.

I am grateful to B. I. Halperin and P. C. Hohen-

berg for several discussions pertaining to this
work.
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