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ments is that this contribution, especially to the
I, transitions, might be somewhat larger than
theoretically calculated. This conclusion is sup-
ported also by earlier measurements" on the
same x-ray cascades in Tl as well as by pre-
liminary results of similar measurements in
Ta
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Recent work has shown that an ion-sound instability in a plasma behaves in a manner
similar to a classical Van der Pol oscillator. Experimental results are presented which
show that the classical method of "asynchronous quenching of a Van der Pol oscj.l]ator"
can be used to suppress this instability in a plasma. Further, the effects observed as
the amplitude an/drofrequency are changed are compared with theories due to Minorsky
and to Kobsarev (or Bogolyubov).

Recently there have been a number of papers' ' which have shown both theoretically and experimen-
tally that various types of self-excited oscillations (or instabilities) in a plasma behave in a manner
similar to those described by a classical Van der Pol oscillator. ' This had led to speculation that the
method of "asynchronous quenching of a Van der Pol oscillator" ' ' might be used to suppress (or
quench) an instability present in a plasma. Essentially, the method relies on driving the oscillator
(or instability) at a high frequency ~ such that ~» u:„the oscillator frequency. Then, as the drive
amplitude is increased the system behaves as if the asynchronous action of this frequency (&u) were
destroying or "quenching" the previously existing self-excited oscillation (&uo). Minorsky' suggested
that "asynchronous quenching" could be interpreted as an asymptotic loss of stability of the self-excit-
ed oscillation caused by random disturbances due to the imposed high-frequency signal and, further,
that as the drive frequency (o,) is increased the amplitude of this oscillation in the system at &u should
fall proportionally to Ij&u.

In the last few years, there has been some discussion" "on this subject of quenching. It has been
suggested' that theoretically the phenomena known traditionally as "synchronization"" and "asyn-
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chronous quenching" are the same and, in fact, the "asynchronous quenching" is just "synchronization
of a Van der Pol oscillator" at large frequency de-tuning. Further, it has been suggested that the Mi-
norsky stroboscopic analysis ' is incorrect and that when the self-excited oscillation (~,) is just sup-
pressed, the amplitude of the signal at frequency e remaining in the system is constant independent
of applied frequency. The results of some analog computer experiments" have added weight to this
argument. However, this paper reports quenching experiments which have been performed on an ion-
sound instability' in a neon plasma that, in general, appear to confirm the theory of "asynchronous
quenching, "but in detail is at variance with the theories of both Minorsky" and Kobsarev (or Bogo-
lyubov). ' "

Theory. —In Ref. 4, it was shown that the density perturbations n, of the ion-sound instability in a
plasma could be described by a Van der Pol' type of equation given by

(d2n, /dt2)- (dn, /dt) (o.-2pn, -3yn, 2) + (u, 2n, =B(o' sin(ut,

where u is the applied drive frequency of amplitude B, u, (=k2c, ) is the instability frequency, k is
the axial wave number, and c, is the ion-sound speed. Also, yn, «2Pn, «o«&u„where o. is the lin-
ear growth rate and P and y are the nonlinear saturation coefficients which limit the final amplitude
of the unperturbed oscillation AI [AI = (4n/3y)'"].

Then, by making the substitutions v, t= T and y = 2g, /AI = (3y/o. )'~'n„ the reduced Van der Pol equa-
tion is obtained:

d p cx AIPJ1-. -y' —-y =E sinvT,
(00 Q d T

(2)

where v = u/v, and E =2Bv2/AI.
Bogolyubov approach —.(a) If the substitution y =x+UsinvT is made in Eq. (2), where U=E/(1-v'),

the following equation is found:

Q . 2 4x dx
2+x—[1-(x+U sinvT')'] —+ Uv cosvT = ef vT, x, —d7' 400 dT

(3)

Equation (3) may be solved by the method of "asymptotic expansion" (see Ref. 9 or 13) for the "non-
resonant" case (i.e., when &u wmv„m an integer), in the approximation that e = o/&u, « l.

The influence of the perturbing force is expressed by the fact that neither the amplitude of oscilla-
tion nor the velocity of phase rotation need remain constant in time, and also harmonics and sum and
difference frequency terms appear. Hence, a solution of the form

x =acosg+eu, (a, g, vT) +e u, (a, g, vT) + ~ ~ ~ (4)

is assumed and the possible variations in amplitude and phase are taken into account with the terms

da/dT = eA, (a) + e'A2(a) + ~ ~ ~,

dg/dT =1+eB,(a) +e'B2(a) + ~ ~ ~ .
(5)

(6)

The problem of solution of Eq. (1) reduces to deriving the functions u„u„~~ .A„A„~~ .B„B„~~ ~

such that the assumed solution Eq. (4), with a and P substituted by functions of time defined by Eqs.
(5) and (6), are a solution of the original Eq. (3).

After much tedious algebra, a solution is obtained correct to second order, that

x =a cosg+ e[Uv(4-U'-2a2)/4(1-v2) ]cosvt,

and a and g must satisfy the equations

da a a' U'1-———,—= 1-O(e ).
d7 2 4 2 'dv.

In the limit of high drive frequencies v = &u/ru, » 1, Eq. (8) reduces to

/dT = 1—~ e2 +e2U2(~l'I 27U2)
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Under steady-state conditions da/dt =0 and thus Eq. (8) becomes

4' =Xi'-2v'B'/(v'-I)',

where A is the amplitude of instability in the presence of the driving signal, and AJ is the unperturbed
amplitude. This shows that as the drive amplitude is increased a point is reached at which A -0, and
then the critical value B~ is given by

B,=2 '"[l-(~,j~)']A&.

The instability frequency should change for high-frequency drives according to Eq. (9), and this is
given by

hu = a'B'[17 27(-B'/A I')']/441'&u„

where h~ is the change in frequency from its value when 8 =0. The signal remaining in the plasma
when the instability just disappears is

Summarizing, this approach maintains that when a high-frequency signal e is applied to a self-excited
oscillation AJ, this oscillation shouM be "quenched" when the critical drive amplitude B, reaches a
value B,=A&/v2, and the signal remaining in the system at frequency v is of magnituie =4&/v2.

Minorsky approach. "—(b) Returning to Eq. (2), Minorsky starts by taking a zero-order solution,
for the case e =0 (and uses the system of units such that E =1):

yo(v) =A sinT+B cosr+M sinvT,

u, (r) =d(y, (7))/d7 =A cos7-B sine +Mv cosv7. ,

(14)

(15)

(16)

where M =1/(1-v').
For first order, he takes y(7) =yo(v) +ey, (r); u(w) =uo(r) +au, (7). From perturbation theory the rela-

tionships below are obtained:

y, (7) = J, sin(~-g)f(y„(dy,/dr))dg; u, (T) = g cos(~-g)f(y„(dy,/dr))dg,

f(y., (dy. /dT)) = [~ (4P j-~)y;y.']dy.j«
Then, going to the "stroboscopic" equations
-which essentially "see"y and M only at periodic
intervals of 2m/v, and defining a stroboscopic
"time" scale of T =2~a in order to observe what
is happening to the self-excited oscillation, equa-
tions can be obtained for dy/dT and du/dT which
in the limit of la, rge v (»1) reduce to

dy/dT =-(2m'/ev')y + (2n/ev')u+ (2~/ev'), (17)

du/dT =-(2n/gv')y-(2m'/ev')u —(2m'/ev ). (18)

In the steady-state conditions, dy/dT =du/dT --0,
and Minorsky obtains the solution

y =0, u=l/(o.

As the energy E stored in the oscillation is E
=u2+y2 = 1/&u2, the amplitude of the signal falls
as vE =1/&o, when quenching of the self-excited
oscillations at ~0 occurs.

Experimental. —The experimental arrangement
was similar to that described in Ref. 4. The

plasma was the positive column of a neon arc
discharge with a mercury-pool cathode, and had
a peak density n, -3x10" cm ', a constant elec-
tron temperature T, = V.O eV, and was contained
in an axial magnetic field Bo-200 G. The nature
of the instability was determined by using radial-
ly movable probes and axially movable photodi-
odes outside the glass containing vessel. It was
found to have predominantly a single frequency,
independent of magnetic field, of -'l. s kHz with
an m =0 azimuthal mode number, and an axial
wavelength X = 80 cm. The experimental phase
velocity was 6.0x10' cm/sec, compared with a
theoretical ion-second velocity C~ =(kT, /M )'"
= 5.8x10' cm/sec. Consequently, as the oscilla-
tion was independent of peak density and axial
magnetic field, it was identified as an ion-sound
instability.

Density perturbations at varying frequencies
~ were applied to the plasma by four different
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methods; these were as follows:
(1) By direct application of an oscillating poten-

tial between cathode and anode of the apparatus,
which modulated the axial velocity v, (and con-
sequently the density) of the plasma.

(2) By connecting an oscillator between the two
grid probes spaced apart axially in the plasma,
the density perturbations being produced by the
same mechanism as in (1) above.

(3) By passing oscillating current through four
magnetic coils spaced azimuthally at equal inter-
vals around the discharge column. The plane of
each coil was such that an in-phase oscillating
magnetic field Be was produced in the plasma,
which by virtue of the [BexE,] drift caused an os-
cillating axial velocity va (or density perturba-
tion) in the plasma. (Here E, is the zero-order
radial electric field in the plasma. )

(4) By passing current through a single magnet-
ic coil wound around the glass discharge tube,
which produced an oscillating field 8 and had
the effect of "squeezing" and "relaxing" the plas-
ma, thus modifying the containment pressure ir

at this position. Consequently, this produced a
density perturbation in the plasma, linearly pro-
portional to the current I in the coil (since p rr-n

cr-BP ~I).
All four methods produced essentially the same

results and the details presented here were ob-
tained using method (4). The density perturba-
tions in the system were monitored at different
radial and axial positions by using either an ion-
biased probe or an axially movable photodiode,
and the output signal was displayed on a spec-
trum analyzer. A typical frequency spectrum of
the instability, when the external drive signal is
zero, is shown in photograph (a) of Fig. 1. Pho-
tograph (b) shows the effect when the ac current
in the coil (at 85 kHz) is increased to 6.5 A peak
to peak and it is seen that the instability is
quenched. Equation (10) in Bogolyubov's theory
predicts that the square of the amplitude of the
instability A' should fall linearly with the square
of the drive amplitude B' (csI'). This is shown
plotted in Fig. 1 for three different frequencies;
20, 53, and 85 kHz, and in each case the linear
relationship appears to be well satisfied. Fur-
ther, in this theory, Eq. (12) predicts that the
critical amplitude B,(&u) [or critical current
I (v)] should vary as a function of applied fre-
quency v, proportional to [1-(csi,/&u)']. Figure
2(a) shows the reduced critical current I,(rsi)/
I~(~) [where I~(~) is the critical current at high
frequencies] plotted as a function of drive fre-
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quency. The theoretical prediction Eq. (11) is
shown as the continuous lines in this figure.
Again, it is seen that good agreement is obtained.

The Bogolyubov theory also predicts that, as
the drive amplitude is increased and the instabil-
ity is gradually quenched, the frequency of the
instability should gradually increase from its un-
perturbed value and that the shift b, ~ should be
predicted by Eq. (12) for high-frequency drives.
The theory shows that this shift 6v should be
proportional to the linear growth rate squared
(i.e., o'). The linear growth rate a was mea-
sured by using the method of "asynchronous
quenching" to suppress the instability and then
utilizing a tone-burst generator to gate the sig-
nal in the drive coil at periodic intervals. The
resulting instability signal was photographed and
the rise time and decay time analyzed to obtain a
value for the linear growth rate a. In case (a) it
was found to be (0.20+ 0.04)&uu. By modifying the
conditions of. the arc, the growth rate in case
(b) was changed to (0.33+0.05)&u, . Figure 3

c.

0 75 I5 225 kHz

FIG. 1. Experimental "mplitude squared (arbitrary
units) plotted versus (drive) current squared I, A' (peak
to peak) l . Photographs show frequency spectrum of
instability for (a) zero drive current and (b) drive cur-
rent 6.5 A (peak to peak) .
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FIG. 2. (a) Reduced critical current I~(~)/I~( ) ver-
sus drive frequency. (b) Reduced drive amplitude in
the plasma A(~)/A~ as a function of drive frequency &u.

shows the shift hf obtained in the two cases plot-
ted as a function of reduced current squared (I/
I,)'. Again, it is seen that good agreement is
found.

Also, the amplitude A(&u) (at the drive frequen-
cy) present in the plasma when the current reach-
es its critical value I,(~) (and the instability is
quenched) has been measured as a function of
frequency &u. This is shown in Fig. 2(b) plotted
as reduced amplitude A(&u)/AI against frequency.
Here the agreement with theory ends, and it is
seen that the Bogolyubov' theory predicts A(&u)/
A1=1/v 2 independent of frequency, whereas Mi-
norsky' predicts that the amplitude should fall
proportional to 1/&u as the frequency is increased.
In fact, we find that it falls more rapidly than
this and is nearer a 1/&u' variation.

No evidence was found to support the conjec-
ture of Pengilley and Milner" that "asynchronous
quenching" and "synchronization" are the same
phenomenon. No synchronization, or frequency
entrainment, bebveen the drive frequency or its

subharmonics and the instability was apparent
until the signal frequency approached to within a
few kHz of the instability frequency. Generally,
the agreement vrith the Bogolyubov approach is
good, and as a consequence it is inferred that
"asynchronous quenching" is the mechanism of
suppression in these experiments.
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