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ity, it follows that the transitions persist for
such potentials.

(ii) An extra feature of real three-dimensional
fluids that is absent in our one-dimensional
models is the occurrence of a solid-liquid transi-
tion. Perhaps our anticipated second critical
point (P„p2, T2) materializes within the solid
region, giving rise to a solid-solid transition
that involves no change of crystal symmetry. "
This seems more likely to us than the possibility
that the "extra" transition could play a fundament-
al role in determining the characteristics of the
solid-liquid transition itself.

*Work supported in part by the Research Foundation
of the State University of New York.

In three dimensions, presumably any finite-range
attraction suffices to guarantee a phase transition. In
one dimension the negative potential must be long
ranged in some extreme sense, for instance, decaying
like -x " with lan&2 [F, J. Dyson, Commun. Math.
Phys. 12, 91, 212 (1969)]. In all dimensions a weak
long-ranged attraction of the form (1) yields a first-
order transition in the limit y 0. j See J. Lebowitz
and O. Penrose, J. Math, Phys. 7, 98 (1966), See also
M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, ibid. ,
4, 216 (1963), and N. G. van Kampen, Phys. Rev. 135,
A362 (1964), for closely related earlier work, and

D, J. Gates and O. Penrose, Commun. Math. Phys. 15,
225 (1969), for closely related recent work. ]

See J. Rowlinson and B.Widom, J. Chem. Phys. 52,
1670 (1970), for a detailed discussion of this symmetry.

3A greater variety of transitions can be expected for
p & 1. Consider, e.g. , the two- or three-dimensional
(cubic) lattice gas with a finite nearest-neighbor repul-
sion Vo and no attraction. Then there are two second-
order transitions (antiferromagnetic in spin language}
below a critical temperature (the Neel temperature).
By adding an attraction of the type (1), one obtains
four transitions along low-temperature isotherxns.

Lebowitz and Penrose, Ref. 2; Kac, Uhlenbeck, and
Hemmer, Ref. 2; van Kampen, Ref. 2; and Gates and
Penrose, Ref. 2.
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J, Rowlinson, Liquids and Liquid Mixtures (Butter-
worths, London, 1969), p, 86. H. D. Baehr, Forsch.
Ingenieurw. 29, 143 (1963), and Brenstoff Warme Kraft
15, 514 (1963). We are grateful to Dr. J. M. H. Levelt
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The exponent 1-n' in Eq. (7) is just 1/s in our mod-
el and could equally well be expressed as 2P or 2/(6-1).
It is, however, only the exponent l-a. ' that one might
expect to carry over to real Quids, since Quid values
of 2P or 2/(5-1} are inconsistent with the experimental
indications that the exponent must be close to unity.
Eq. (7) was also conjectured in Ref. 2 on the basis of
a very different model.

B. Widom, J. Chem, Phys, 43, 3098 (1969).
G. Stell, Phys. Rev. 173, 314 (1968).
Such transitions are known to exist. See, for exam-

ple, A. Jayaraman, .Phys. Rev. 137A, 179 (1965).
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The thermoluminescence of KCl:Tl following gamma-ray irradiation was studied using
0

a new technique. Most of the emission occurs at 3050 A, but three weak bands also ap-
0

pear. The 3050-A glow curves, after different doses, consist of one or more peaks from
0

a set of seven peaks occuring between 312 and 537 K, The total 3050-A emission increas-
es and then decreases, and the most intense glow peak shifts from jow to high tempera-
ture with increasing dose.

Crystals of KCl:Tl have been intensely studied
both theoretically and experimentally for more
than 20 years. ' In fact, this particular combina-
tion of host alkali halide and intentionally intro-
duced impurity probably has been investigated

more extensively than any other similar combi-
nation. A large fraction of the experimental
work, involving almost every conceivable kind of
solid-state technique, has been confined to mea-
surements at room temperature or below. In con-
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taining several unique and powerful features.
Very briefly, this equipment simultaneously mea-
sures both the intensity and spectral distribution
of the thermoluminescence emission. The data
are computer processed and a plot, such as is
shown in Fig. 1, is obtained from each sample.
The sample is heated in a vacuum at a linear
rate, usually 10'C/min, using an electronically
regulated oven controlled by a bridge circuit con-
taining a platinum sensor in one arm„and a
digitally produced resistive ramp in the other.
Each line parallel to the wavelength axis repre-
sents 32 scans, at a rate of 1 scan/sec, of a
grating spectrometer. The intensity versus
wavelength information for each scan is stored
in a 1024-word buffer in a small computer pro-
grammed to accumulate data using well-estab-
lished "signal averaging" techniques. The data
averaged over 32 scans, representing a temper-
ature interval of approximately 5 C, are then
stored on magnetic tape. Each "glow spectrum",
which may consist of up to 66000 points after
averaging, is processed on a large computer.
This procedure includes the required normaliza-
tion and calibration corrections, and prepara-
tion of the three-dimensional plots whose per-
spective may be altered to obtain views which
emphasize the dependence on either temperature
or wavelength. It should be emphasized that all
of the data are obtained from a single sample
after a single irradiation period. Clearly, a
plot like Fig. 1 is a very graphic device for pre-
senting thermoluminescence data, but more im-
portant, it facilitates a rapid and a thorough
analysis of the data. Parenthetically, it should
be mentioned that these plots show how to max-
imize the sensitivity of conventional thermolumi-
nescence apparatus for the study of individual
emission bands in weakly emitting samples.
Specifically, they provide the data required to
specify the maximum band-pass optical filter
which can be used and still eliminate unwanted
emission. This apparatus will be described in a
separate paper.

All measurements were made on previously
unirradiated pristine samples cleaved from a
single boule of KCI:Tl containing approximately
100 ppm of TI which had been purchased from
Harshaw. This thallium concentration is low
enough to prevent the formation of all but a neg-
ligible quantity of thallium dimer. Each sample
was wrapped in light-tight aluminum foil for all
operations prior to heating. hey were irradiat-
ed with Co" gamma, rays at a dose rate of ap-

proximately 5X 10' rad/h at approximately 25'C.
The crystals were subjected to total doses be-
tween 10' and 5x 10' rad. Because the thermo-
luminescent emission close to room temperature
depends on the time interval between the termina-
tion of the irradiation and the start of the mea-
surements, the data were obtained from glow
curves started 24 h after irradiation.

A comparison of the "three-dimensional" plots
obtained from the irradiated samples reveals
several general features. First, a large fraction
of the emission is confined to a broad band which
peaks at approximately 3050 A. There are addi-
tional bands at 3800, 4400, and 4750 A. All of
these bands correspond closely to the emission
bands previously observed in KCI:Tl."' " The
bands at 3800, 4400, and 4750 A do not occur at
all temperatures and their presence makes it
difficult or impossible to analyze conventional
glow curves. Second, there are seven distinct
glow peaks associated with the 3050-A band over
the dose and temperature range examined.
Third, at low total doses most of the emission is
confined to low-temperature glow peaks. As the
total dose is increased the total amount of light
emitted increases and the distribution of emitted
light among the various glow peaks shifts towards
higher temperatures. Finally, in samples ex-
posed to 5&& 10' rad or more, the emission is re-
duced and confined to the highest-temperature
peaks.

To determine, if possible, the thermolumines-
cence kinetics, plots were prepared showing the
emission at 3050, 4400, and 4750 A as a function
of cryst:al temperature. All of these eonstant-
wavelength glow curves were immediately analyz-
able using the simplest conceivable kinetics.
Namely, each of the traps appears to be indepen-
dent of the others, i.e., retrapping does not
occur, and the untrapping rates are all given by
the simple expression dN/dt =N,s exp( —E/kT),
where N, =initial trapped-charge concentration,
s -frequency factor, E =activation energy, and
k and T have the usual meaning. A typical 3050-

0
A glow curve and its constituent glow peaks are
shown in Fig. 2.

Most importantly, all of the 3050-A glow curves
obtained after irradiations extending from 10' tp
5& 10 rad can be fitted by 7 peaks; only the rela-
tive intensities of the various peaks change from
one curve to the next. The parameters describ-
ing low peaks producing the 3050-, 4400-, and
4750-A bands in a crystal exposed to 3& 10' rad
are contained in Table I.
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