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agreement with the value extrapolated from heat-
capacity measurements by Sample and Swenson. "
This compares with 29 K as calculated by De-
Wette, Nosanow, and Werthamer.

We find no indication of any anomaly in the pho-
non dispersion curves which might explain the
low-temperature specific-heat anomaly. " " And

indeed, this anomaly has recently been attributed
by Varma" as arising from a phonon-mediated
long-range spin interaction, although some criti-
cism has been raised by Guyer. "

)Work supported by the National Science Foundation.
F. W. DeWette, L. H. Nosanow, and N. R. Wertham-

er, Phys. Rev, 162, 824 (1967).
T, R. Koehler, Phys. Rev. Letters 18, 654 (1967).

~L. H. Nosanow and N. R. Werthamer, Phys. Rev.
Letters 15, 618 (1965).

4N. S. Gillis, T. R. Koehler, and N. R. Werthamer,
Phys. Bev. 175, 1110 (1968),

5R. Crepeau, O. Heybey, and D. M. Lee, Bull. Am.

Phys. Soc. 14, 95 {1969).
6R. Wanner and J. P. Franck, Phys, Rev. Letters 24,

865 (1970).
D. S. Greywall and J. A. Munarin, to be published.

BF. P. Lipschultz and D. M. Lee, Phys. Rev. Letters
14, 1017 {1965).

J. H. Vignos and H. A, Fairbank, Phys. Rev. 147,
185 {1966).

V. K. Tkachenko and A. I. Filimonov„Cryog. 2, 359
(1962) .

D. S. Greywall, thesis, Indiana University, 1970
{unpublished).

F. I. Fedorov, Theory of Elastic TVaves in Crystals
(Plenum, New York„1968).

H. H. Sample and C. A. Swenson, Phys. Rev. 158,
188 (1967).

~4K. C. Heltemes and C, A. Swenson, Phys. Rev. 128,
1512 (1962),

R. C. Pandorf and D. O. Edwards, Phys. Rev. 169,
222 {1968).

P. N. Henriksen, M, F. Panczyk, S. B, Trickey, and
E, D, Adams, Phys. Rev. Letters 28, 518 (1969).

C. M. Varma, Phys. Bev. Letters 24, 208 (1970),
"R. A. Guyer, Phys. Rev. Letters 24, 810 (1970).

FLUIDS WITH SEVERAL PHASE TRANSITIONS

P. C. Hemmer
Rockefeller University, New York, New York 10021, and Institute of

Theoretical Physics, NTH, Trondheim, Norway

and

G. Stell*
Department of Mechanics, State University of New York, Stony Brook, New York 11790

(Received 1 May 1970)

For a Quid in which the interaction potential has a hard core plus a negative part, soft-
ening of the hard core can produce a second transition if a first already exists. We give
a general ar@unent for the occurrence of the second transition in the lattice gas, plus
explicit results for one-dimensional fluid models with two first-order transitions, One
such model also provides an example of the breakdown of the law of rectilinear diame-
ters.

For a model of a f'.~id in which the pair poten-
tial p(r) has a hard core p1us a negative part,
the occurrence of a first-order transition de-
pends upon dimensionality and upon the range of
the attraction. ' In this note we further conclude
that in such models already exhibiting a phase
transition, one can induce a second transition
by simply softening the hard core judiciously.

We begin with a general argument relevant to
a lattice gas of any dimensionality and then give
explicit exact results for a one-dimensional
fluid.

I. The v-dimensional lattice gas. —The lattice

gas is a cell model of a Quid in which the inter-
particle potential depends only upon the relative
location of the cells containing the particles.
The hard core is provided for by exclusion of
multiple occupancy of a cell; suppose in addition
that the positive potential V, between pairs of
particles in adjacent cells is also infinite. Let
particles in non-neighboring cells interact via a
negative potential capable of producing a first-
order transition' with a critical point at (p„T,).
Using the cell volume as the volume unit, the
maximum density of the system is clearly &&.

Now consider Vo finite but arbitrarily large.
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Since the equation of state depends on V, only
through the Boitzmann factor exp(-PV, ) which
is now arbitrarily small, we expect the first-
order transition still to exist, shifted by an
arbitrarily small amount. But by the symmetry
between occupied and unoccupied cells (particle-
hole symmetry') there must then be a second
critical point arbitrarily close to (1-p„T,) and
therefore the system has two first-order transi-
tions' at lower temperatures.

A simple choice for the attraction is a negative
potential of the form

Vo

t d ~kd~

0.5
Vod/O

0.;5

0.2

O. l

0.5

where a= ,' fF-(r—)dr exists and is positive, and
where the limit y —0 is taken after the thermo-
dynamic limit. ' The one-dimensional system is
mathematically equivalent to an Ising chain,
which indeed has two transitions. This was re-
cently demonstrated by Nagle, ' whose work in-
spired this note. The heuristic argument given
above, however, is independent of dimension-
ality and of the details of the attractive part of
V(r).

For continuum Quids the hole-particle sym-
metry argument is no longer available. Never-
theless, one could expect a similar phenomenon
to appear: A hard-core system showing a first-
order phase transition could be capable of ex-
hibiting two phase transitions if the hard core
is softened in a reasonable way. We show next
that this expectation is justified in the one-di-
mensional case.

II. A one-dimensional continuum Quid. —As an

explicit example we consider a one-dimensional
fluid with the following pair potential:

p(r) =~ for r &d,
= V,[l-(r-d)/dX] for d & r & d(1+ A.),
= —aye &" for d(1+X) & r,

where the limit y-0 is to be taken at the end
[see Fig. 1(a)]. For V, =~ the hard core extends
to r =d(1+ X), and by taking Vo finite the outer
part of the core is softened. For A. ~ 1 the posi-
tive part of the potential acts only between neigh-
boring particles and the free energy F+(V, T) of
a system with only this interaction is easily
found. ' The free energy when the weak long-
ranged attraction is also taken into account is
then

F(V, T) =CF(F,(V, T) a/V). —

FIG. 1. The one-dimensional potential and the range
of potential parameters for which two transitions exist
(t.p. means triple point).

tion, the maximal convex function not exceeding
the function.

The main properties of the resulting equation
of state are the following:

(i) For a given value of A. , a minimum value of
V,d/a, shown in Fig. 1(b), is required for two
transitions to appear. One of the striking facts
revealed by this figure is that regardless of the
smallness of A. , the relative range of the soft
repulsion, there will be two transitions if V,
& aM.

(ii) For the positions (p„p„T,) and (p„p„T,)
of the critical points, we content ourselves with
the following qualitat:ive observations, all for
A. ~ 1: One critical point always has parameters
p„p„T, that lie between the values they attain
for the limiting case! V, = 0 and V, = ~, and for
fixed X they vary monotonically between these
limiting values. The second critical point always
has higher critical density and lower critical
temperature than the former, and for fixed X

both p, and T, decrease slightly with increasing
V„while p, increases without bounds when Vo

When A. -0 for a fixed V„p, and p, increase
while T, decreases to zero. Details will be given
elsewhere. Note the difference from the lattice
gas where 7.', = T, and p, = l-p, by particle-hole
symmetry. '

(iii) When the potential parameters yield two
transitions, a triple point where all three Quid
phases are in equilibrium occurs if V,d/a & X/

(1+A) [see Fig. 1(b)]. The difference in behavior
of the coexistence curves depending upon the,

existence of a triple point is exhibited in Fig. 2.
(iv) Both critical points have the classical

critical indices

Here CE denotes the convex envelope of the func- 5=3, P=-„y=y'=1, o. =n' =0. (4)
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ity, it follows that the transitions persist for
such potentials.

(ii) An extra feature of real three-dimensional
fluids that is absent in our one-dimensional
models is the occurrence of a solid-liquid transi-
tion. Perhaps our anticipated second critical
point (P„p2, T2) materializes within the solid
region, giving rise to a solid-solid transition
that involves no change of crystal symmetry. "
This seems more likely to us than the possibility
that the "extra" transition could play a fundament-
al role in determining the characteristics of the
solid-liquid transition itself.

*Work supported in part by the Research Foundation
of the State University of New York.

In three dimensions, presumably any finite-range
attraction suffices to guarantee a phase transition. In
one dimension the negative potential must be long
ranged in some extreme sense, for instance, decaying
like -x " with lan&2 [F, J. Dyson, Commun. Math.
Phys. 12, 91, 212 (1969)]. In all dimensions a weak
long-ranged attraction of the form (1) yields a first-
order transition in the limit y 0. j See J. Lebowitz
and O. Penrose, J. Math, Phys. 7, 98 (1966), See also
M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, ibid. ,
4, 216 (1963), and N. G. van Kampen, Phys. Rev. 135,
A362 (1964), for closely related earlier work, and

D, J. Gates and O. Penrose, Commun. Math. Phys. 15,
225 (1969), for closely related recent work. ]

See J. Rowlinson and B.Widom, J. Chem. Phys. 52,
1670 (1970), for a detailed discussion of this symmetry.

3A greater variety of transitions can be expected for
p & 1. Consider, e.g. , the two- or three-dimensional
(cubic) lattice gas with a finite nearest-neighbor repul-
sion Vo and no attraction. Then there are two second-
order transitions (antiferromagnetic in spin language}
below a critical temperature (the Neel temperature).
By adding an attraction of the type (1), one obtains
four transitions along low-temperature isotherxns.

Lebowitz and Penrose, Ref. 2; Kac, Uhlenbeck, and
Hemmer, Ref. 2; van Kampen, Ref. 2; and Gates and
Penrose, Ref. 2.
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The exponent 1-n' in Eq. (7) is just 1/s in our mod-
el and could equally well be expressed as 2P or 2/(6-1).
It is, however, only the exponent l-a. ' that one might
expect to carry over to real Quids, since Quid values
of 2P or 2/(5-1} are inconsistent with the experimental
indications that the exponent must be close to unity.
Eq. (7) was also conjectured in Ref. 2 on the basis of
a very different model.

B. Widom, J. Chem, Phys, 43, 3098 (1969).
G. Stell, Phys. Rev. 173, 314 (1968).
Such transitions are known to exist. See, for exam-

ple, A. Jayaraman, .Phys. Rev. 137A, 179 (1965).
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The thermoluminescence of KCl:Tl following gamma-ray irradiation was studied using
0

a new technique. Most of the emission occurs at 3050 A, but three weak bands also ap-
0

pear. The 3050-A glow curves, after different doses, consist of one or more peaks from
0

a set of seven peaks occuring between 312 and 537 K, The total 3050-A emission increas-
es and then decreases, and the most intense glow peak shifts from jow to high tempera-
ture with increasing dose.

Crystals of KCl:Tl have been intensely studied
both theoretically and experimentally for more
than 20 years. ' In fact, this particular combina-
tion of host alkali halide and intentionally intro-
duced impurity probably has been investigated

more extensively than any other similar combi-
nation. A large fraction of the experimental
work, involving almost every conceivable kind of
solid-state technique, has been confined to mea-
surements at room temperature or below. In con-

1287


