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(Received 23 March 1970)

All ground-state bands observed in even-even nuclei, including closed-shell nuclei,
are accurately predicted by a two-parameter description based on the cranking model.
A hitherto unobserved discontinuity in a plot of E(I)/E(2) vs E(4)/E(2) is also predicted
by the model.

Experimental data recently reported' appear
to confirm that the gradual change of properties
of ground-state bands which takes place with de-
creasing deformation continues well beyond the
"vibrational" region and includes indeed all nu-
clei. '' The purpose of this note is to propose a
unified rotational description for all these bands
based on an extension of the cranking model' due
to Harris. '

In 1959 Mallmann' pointed out that ground-state
bands in even-even nuclei (i.e. , lowest excited
states with spins I= 2 4 6 ~ ~ and even parity)
exhibited a regular behavior when the energy ra-
tios E(I)/E(2) were plotted against E(4)/E(2).
The data presented by Mallmann spanned the in-
terval

it corresponds to 80=0 (the case of "soft" nuclei,
spherical in the ground state). In the following
we discuss the solutions which are obtained when

Sp 3nd C are allowed to be negative. ' %e choose
to follow Harris's approach because, although
the solutions obtained with both models are math-
ematically equivalent, they are very difficult to
interpret in terms of the VMI model. " Further-
more, since Harris's equations are derived from
the cranking model, ' one may hope to obtain
and C, which are here adjusted to fit the data,
from a microscopic calculation. Such a calcula-
tion would be a valuable complement to the fol-
lowing analysis.

Harris's model' is based on the two equations

1&E(4)/E(2) &3.33.

A. successful phenomenological description of
these regularities in the more limited interval

E~ = p(u'(i(, + 3C(u')

[I(I+I)]"= (u(d, + 2Cu)').

(3)

2.23 & E(4)/E(2) & 3.33

has been provided by the variable moment-of-in-
ertia (VMI) model. ' It has been shown' that the
equations of this model are mathematically equiv-
alent to the equations derived by Harris' from an
extension of the cranking model' to the next high-
er order in uP (cu is the angular velocity). In both
approaches two parameters are involved, the mo-
ment of inertia in first order do and the coe
cient C of the next-higher —order term. In (2) the

upper limit corresponds to C =0 (the case of
hard, well-deformed nuclei) while the lower lim-

From Eqs. (3) and (4) one sees that, as Harris
has pointed out, a different "effective" moment
of inertia enters into the calculations of energy
and angular momentum. It is convenient (as dis-
cussed below) to introduce a phenomenological
definition of the moment of inertia F(I) in terms
of energy and spin as

E„(I)=I(I+ I)/2P (I).

Using Eqs. (3), (4), and (5), the angular velocity
~ is eliminated and the following equations are
obtained which determine the moment of inertia
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FIG. 1. The three real roots o, , P, and y of the cubic
equations (6a) and (6b) for the moment of inertia and
the energy are plotted in (a) aud (b), respectively. The
insert in (b) shows an expanded plot (for -10 ~ & d «0)
of solutions o.' and P when 80&0 and C&0. The dots in-
dicate the physical solutions obtained for C/go~= -10
and I= 0, 2, 4, 6, and 8. The e p "trajectory" indicat-
ed in dashed line corresponds approximately to the
ground-state band of Mo~2, while the sequence of solu-
tions lying on the o. "trajectory" corresponds approxi-
mately to the ground-state bands of Mo~4 and Hu~e.

and the energy":

(1+27d)q' —(1+36)tI'+ 8dq —16d' = 0, (6a)

e'-2e'+ (1+36d)e —4(1+27d)d = 0, (6b)

where tI = P/d„e = E~/(0, '/8C), and d = (C/0, ')l(I
+ 1).

The real roots of Eels. (6s) and (6b), which we
denote as n, P, and y, are shown in Fig. 1.
Three real roots coexist only in the interval —2/
27 cd &0. For d &0 one obtains the energy levels
described in Ref. 9. For I =0, the y root leads to
&(0) =&c and E&(0)=0, while the a and P roots
lead to F(0) =0 and Es(0) =&,'/8C. Thus the ener-
gy of the ground state in cases o and p is differ
ent from zero, and the level energy is E(I) =E„(I)
-E~(0).

Ground-state bands are obtained from the mod-
el as a seIluence of solutions Es(I) with I=0„2,4,

~ ~ and constant 8, and C. Once the pair (&„C)
is fixed, only those points on the n, p, and y
curves which correspond to integer values of I
will represent possible solutions. This situation
is similar to that found in high-energy physics
where physical bound states and resonances are
described by a Regge-pole trajectory passing
through integer values of the spin. We can thus
think of the cI, p, and y curves as analogous to
Regge trajectories. Formally, however, other
"trajectories" connecting solutions which lie on
different curves are also possible as long as 80

and C are the same. In the insert of Fig. 1(b)
one such possible "trajectory", labeled nP, is
indicated. As shown below it describes remark-
ably mell the ground-state bands in closed-shell
nuclei. The ~ trajectory, also indicated in Fig.
](&b&, gives a very good agreement with the ener-
gy spectrum of "vibrational" nuclei. In this note
we only report the results obtained mith these
two solutions together with those corresponding
to the y root reported earlier. '

The ratios E(I)/E(2) are plotted versus E(4)/
E(2) for I = 6 and 8 in Fig. 2, together with the
experimental data. '~ Solution n spans the inter-
val 1.825 ~ E(4)/E (2) ~ 2.231 and connects smooth-
ly with the solution y whose interval of validity
is (2). The solution nP, on the other hand, ex-
tends from E(4)/E(2) = 1 to ~. A remarkable
agreement for the doubly and singly closed-shell
nuclei in the interval 1 ~E(4)/E(2) ~1.825 is ob-
tained with this solution' and the existence of a
sharp discontinuity is apparent at E(4)/E(2)
=1 82~5. This value corresponds to the lower lim-
it of the e-solution inte; val. The experimental
data shown in Fig. 2 strongly support this predic-
tion of the model and reveal a singular phenome-
non, hitherto unobserved, which deserves further
study. In the interval 1.825 ~ E(4)/E(2) ~ 2.231
the data are seen to scatter between the n and o.P
curves. This spread may suggest that states of
nuclei in this interval share, to some degree,
the two solutions. Beyond E(4)/E(2) = 2.231 the
experimental data are, again, accurately de-
scribed by the y solution with the exception of
Ba"' and Ti" The 6'isomeric state in Ba."' has
been interpreted in terms of shell-model config-
urations. " On the other hand, it is well predict-
ed by the o.'P solution (Fig. 2). The significance
of this agreement, however, cannot be assessed
until more data become available.

Finally we briefly mention that the definition
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FIG. 2. Energy ratios E (I}/E (2} a.s a. function of E (4)/E (2) for I= 6 and 8. Solid circles and triangles indicate ex-
perimental values of this ratio for I=6 and 8, respectively. Open circles are discussed in the text and in Ref. 14.
The energy ratios are a function of only one parameter, C/&0 . Values of this parameter are indicated at the top
of the figure. The lower scale corresponds to the aP solution, while the upper scale corresponds to the e and y
solutions. For nuclei withE(4)/E(2) &2.28 the parameter C/do~ represents the "softness" of the nucleus in the
ground state, i.e. fF '(dS/dI))z

(5) of the moment of inertia allows us to extend
the validity of the observed correlation' between
intrinsic quadrupole moments and moments of in-
ertia jQ02'-B(E2, 2' -0') -[F(0)+&(2)]/2) to
closed- and near —closed-shell nuclei and, at the
same time, provides a justification for the ex-
perimental fact pointed out by Grodzins' that
B(E2,2'-0') values are proportional to l/E(2)
Ii.e. , to F (2)] throughout the nuclear chart. Since
F (0) = 0 and F (0) =80 =%(2) for nuclei with E(4)/
E(2) &2.23 and = 3.33, respectively, the model
predicts a. product B(E2)&&E(2) twice as large in
the latter case. Although the experimental val-
ues of this product scatter considerably, they do
seem to form two groups of values consistent
with the prediction.

To summarize, ground-state bands in all even-
even nuclei are accurately fitted by a rotational
description. Several intriguing points emerge
from this phenomenological analysis such as the
prediction and experimental confirmation of a
sharp break in Mallmann's curves at E(4)/E(2)
=1.825, the nonzero ground-state energy in the

case of the n solution, and the striking validity
of the "abnormal trajectory" o.P. The under-
standing of these puzzling facts, as well as the
meaning -of 8, &0, remains a challenging problem.
Furthermore, it is also of interest to find the ex-
tent to which this model applies to the description
of other nuclear excited states which do not be-
long to the ground-state band.

I wish to thank G. Scharff-Goldhaber for the
suggestion 0, &0 and for encouraging discussions.
I am grateful to D. Bes, R. Broglia, B. Buck,
W. Gelletly, and P. Thieberger for enlightening
comments and suggestions, and to E. der Mateos-
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The Frenkel-Kontorova model of a dislocation might be useful for the study of tachy-
ons. The model has tachyonlike solutions which correspond to unstable states. This
may explain why tachyons are unlikely to be observed.

Some time ago, Bilaniuk, Deshpande, and Su-
darshan' re-examined the question of whether or
not the special theory of relativity forbids a par-
ticle to travel faster than light. They concluded
that the existence of faster-than-light particles,
or tachyons, is in no way precluded by the theory.
Recently, Bilaniuk and Sudarshan' remarked that
we should either find the tachyons or explain why
they can never be observed. The question raised
considerable interest and heated discussions. '
To my mind, the arguments of Bilaniuk and Su-
darshan are sound and have, so far, stood up to
criticism. Yet the question of why nobody has
ever observed a tachyon still remains open.

For the sake of argument, let us assume that
tachyons can, in fact, exist. It is not clear
whether tachyons can directly interact with tar-
dons (slower-than-light particles). However,
tardons most certainly do interact with luxons
(particles traveling at the speed of. light). The
symmetry in the relationships between tardons
and tuxons on one hand and tachyons and luxons
on the other hand implies that tachyons must in-
teract with luxons and that such interactions
should be observable.

A transcendent tachyon, i.e., one traveling at

an infinite speed, would be perceived as a rigid
wall. ' Along this line of thought, it appears that
a nearly transcendent tachyon should produce ef-
fects similar to a slow, massive object. A care-
ful analysis of the tachyon effective mass would
seem to be a worthwhile enterprise.

Some insight into the nature of tachyons may be
obtained from the one-dimensional model of a
dislocation developed by Frenkel and Kontorova. 4

In this model, a chain of atoms moves under the
combined influence of harmonic forces between
nearest neighbors and of a sinusoidal interaction
with a rigid substrate. The solutions describe
particles and antiparticles in one dimension.
The outstanding feature of the Frenkel-Kontorova
model is that it exhibits a striking analogy to the
theory of relativity, with the propagation speed
of interaction in the chain, or the speed of sound,
playing the role of c. This result is independent
of the particular law of interaction with the sub-
strate.

Frank and van der Merwe' showed that the mod-
el also yields supersonic solutions which they
termed "positive and negative antidislocations, "
though they might be better called "tachydisloca-
tions and antitachydislocations. " These behave
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