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The stability of ballooning modes is investigated in the neighborhood of the magnetic
axis of an axisymmetric toroidal configuration of the Tokamak type. It is shown that the
stability criterion for these modes is the same as that for localized modes.

A purely poloidal configuration of the multipole type with closed magnetic field lines and an average
magnetic well may become unstable when the ratio P of the kinetic pressure to the magnetic pressure
exceeds a critical value. The unstable perturbations have larger amplitude in the regions of unfavor-
able curvature of the field lines than in the regions of favorable curvature and are called ballooning
modes. On the other hand, for toroidal configurations with rotational transform (Tokamak, Stellara-
tor) the magnetohydrodynamic stability problem is usually studied with the so-called localized criteri-
on. ' ' The corresponding perturbations are much more localized near a magnetic surface than the
ballooning modes, and in the case of an axisymmetric discharge having magnetic surfaces with circu-
lar cross sections it is found' ' that their stability is almost independent of P.

The purpose of the present work is to derive a stability criterion against ballooning modes for axi-
symmetric toroidal configurations with current parallel to the magnetic field lines to provide a rota-
tional transform. Since all perturbations are easily stabilized by shear of the field lines, we restrict
our calculations to the neighborhood of the magnetic axis where shear is negligible.

In cylindrical coordinates r, y, z, the axisymmetric equilibrium magnetic field is

T(y, z) 1B= ' e~ ——e~&&V((r, z),r
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where e is the unit vector in the y direction. The surfaces p(r, z) =const are the magnetic surfaces.
It is convenient to introduce new coordinates g, y, y where y is chosen such that the surfaces y = const
are orthogonal to the surfaces of constant ( and y, and e =e& xe~. In this coordinate system all
equilibrium quantities are periodic in y with period 1; T and the plasma pressure P depend only on (,
and the equilibrium equation takes the form

1 8 T'gp'=-—(za ')—
Zsg ~ r'

where

~=
I V)xpy Vyl ', P'= dP/dg, T'=dT/d&.

We use the energy principle of Bernstein et al. The minimization of 5$' with respect to the compo-
nent $ of the perturbation can be done exactly' and leads to the following expression:

5W= —dgdydy» —+, X +— T-
7T&

where

+B ' + —X — In(&& ') -KX', BU BX
8 q 8 &Jr Bg

2p s
X&&yhq ~

U= (~xeg) 'kg ~
@=~2 P+

2
+

We consider perturbations which vary rapidly in the dirctions perpendicular to the field lines, but
along the field lines with the scale of the communication length between regions of favorable and un-
favorable curvature. We write the perturbation in the form

X=X((,y) exp(im(y —a))

and an analogous formula for U, where

o'(g, y) = f dy JT/r' py, p. (g)= -$dy JT/x' 2mk/m. —

The factor X is assumed to be localized in the g direction with a localization length b,( which is small
compared to the scale of the equilibrium. k is an integer which will be chosen so that

~
p,

~

is as small
as possible on a given magnetic surface around which X is localized.

In the derivation of the localized criterion the localization length hg in the g direction is supposed
to be much smaller than the wavelength in the direction e& &B. In our case we assume that the latter
wavelength is smaller than, or of the same order of magnitude as, &g (and both small compared to
the scale of the equilibrium), as is usually done for ballooning modes. We can then minimize 5W with
respect to U by expanding the Euler equation for U in powers of 1/m. Assuming p. to be of order 1/m
and writing U = Uo+ U, + ~ ~ ~, we obtain

i D — D 8 . B(y

mDg ' Dg Bg ™Bg'

Using this result we find
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From this expression we can obtain the localized criterion if we pass to the limit 6( = e-0 for fixed
zrz with X=X, +X, where BX,/By = 0 and X,—e, BX,/Bg - 1. This result can easily be understood if we
remember the first derivation of the localized criterion. '

In the neighborhood of the magnetic axis we use a set of local coordinates p, 0, y and we expand in
powers of p:

( = g,p'+, g, =a+ b cos20.

The perturbations are supposed to be localized around a surface g
= zl, . The form of 5W suggests the

choice of the following ordering: mb, ( —
go, X=X0+X, with BXO/By=0 and X, —(0'z'-p. We put BX,/By

= F+ iZ where 1 and Z are real. After an integration by parts with respect to y we then obtain

1 Bg ' 1BZ&' 18Z 1BZ
5W= d(dy A(l" +S')+D — + —

I +2C— Y+2E X—+2GY'X +EX (6)
re Bg m B(j m Bt/r m Bg

0 0

rB( By' 8 B( ~ z
r'

The order of these coefficients is as follows: A-p ', C-p', D-p', E-p, 6-p ', E-p'. We now

make a Fourier transform with respect to m(:

Xo(z) = fXO(g) exp(immy)dg,

and similarly for all other quantities. Since m is large, the localization of the perturbation is insured
if the Fourier transforms exist and are square integrable. We introduce the following variables:

P cosy= g,"'(p cos6)& &, P= (a+ b) '"; @sing= &,'"(p cosg)& &, Q= (a b)—
and we put

4K' () z.

Pqa (p=o)

where ~ is the rotational transform. The last expresssion is the ratio of the wavelengths of the per-
turbation in the directions e& &&8 and e& . With the transformation

1'= (V, -i V )&, '"(p')&
&

coszi,
0

we obtain 5W in the form

iZ=(V, +iV )g, "'(p')&
&

coszi,
0

5W=m fdK fdic(5W, +5W )+Ifdvdy EXo',

with

5W, = (PQ/R)
~
V, ~'[P'cos'(zi +g)+ Q'sin'(zi +~)]+P'P'Q'Xo(V, + V, *)sin(zi +y),

where R is the radius of curvature of the magnetic axis.
Obviously, after integration over y the expression for 58' does not depend on g. As we have noted

before, the localized criterion is obtained for 6(-0 with zrz fixed, that is for z-~, zi-zz/2. There-
fore, the fact that 5R' does not depend on q means that in the neighborhood of the magnetic axis, the
criterion for stability of ballooning modes (z1 0 7z/2) is identical to the criterion for localized modes
(zi

= zz/2). Thus, we have given a general proof of a stability condition for modes for which, up to now,
no criterion had been established.

As we know, this result is not true for poloidal configurations (multipoles) in which ballooning modes
may be unstable when localized modes are stabilized by an average magnetic well. ' The present work
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shows that in the neighborhood of the magnetic axis of a Tokamak-type configuration, ballooning modes
are stabilized simultaneously with localized modes. This result is surprising since in the case of
magnetic surfaces with circular cross section the localized criterion does not yield a critical P. In-
deed, the calculations of Adam and Mercier' have recently been completed' by taking into account
second-order corrections in the curvature and it was shown that the stability limit is practically given
by c/2s &1. Hence, it seems that a critical P may perhaps be found only for perturbations with small
values of m and a radial extension on the scale of the plasma radius.
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pendence of the Knight shift (above Z', ) for a sin-
gle V,Au sample with varying T, values caused by
changing its degree of atomic ordering. With in-
creasing T„ two features are immediately ob-
vious: First, the total Knight shift decreases at
4.2 K, and secondly, the total Knight shift shows
an increasing temperature dependence. In Ref.
4 (hereafter R4), it was shown that both of these
features are explicable when based on an increas-
ing d-electron density of states at the Fermi lev-
el. Additionally, results shown in Figs. 3 and 5
of R4 were cited as further experimental proof'
of the postulated increa, se in n(E). Although it
was clear that atomic ordering was causing an

The superconducting transition temperature of V3Au has been experimentally shown to
vary by a factor of 300, depending on the degree of atomic ordering. This has previous-
ly been attributed to a change in the electronic density of states n(E) with ordering. A

model is proposed here which provides a theoretical basis for this change in n(E) with
ol der lng.

Previous publications' ' have shown that the in-
crease in T, for the compound V,Au by a factor
of almost 300 is caused by atomic ordering. A

study of the NMR properties" has shown that
this change in T, is accompanied by a change in
the core-polarization term of the total Knight
shift. This term, relatable to the d electrons,
suggested an increase in the d-band density of
states at the Fermi level, n(E), with increasing
superconducting transition temperature. We pre-
sent here a model which theoretically predicts
this increasing density of states with atomic or-
dering in V,Au.

Figure 1 shows the observed temperature de-


