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FIG. 2. Deviation of the experimental points from
the best-fit curve in the range 0.5~ 1/$K- 4.

quality factor. This can be done by studying the
deviation of each experimental point from the
"best fit" theoretical curve as a function of I/$&.
The experimental points should be statistically
distributed on both sides of a "true" theoretical
curve. On the other hand we find that the experi-
mental points are not statistically distributed
around the theoretical curve in the region 0.5
~I/$K-4. This is shown in Fig. 2 where sche-
matically the dotted line shows the behavior of
the experimental points around the calculated
curve. The fact that this region is mostly re-
sponsible for the low quality factor is confirmed
by the fact that a fit using only the points outside
and on both sides of the region 0.5 - I/$& - 4

gives a quality factor of 0.876.
As a final remark we note that, using Kawasa-

ki's expression A =k qT/16@* and our experimen-

ta]. value 2=1.51&10 "cm' sec ', one gets
q+=]..97x10 ' stokes,

which is in excellent agreement with the static
value determined by Arcovito et al."using a
capillary-flow viscosimeter (il = 1.9 x 10 ' stokes).

Thus we may conclude that Kawasaki's expres-
sion gives a complete and fairly accurate de-
scription of the behavior of the spectrum of the
light scattered by a binary mixture in the hydro-
dynamic@1 and nonhydrodynamical regimes.
There is, however, at least in a limited region,
a small but significant discrepancy between the-
ory and experiment. We feel that, because of
their great number and overall accuracy, our ex-
periments could be compared with an even more
refined theory; for instance, one which would
consider riW0, q*= ti*((,K), or second-order
terms.
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TEST OF A PARAMETRIC EQUATION OF STATE AND CALCULATION OF
GRAVITY EFFECTS AT THE GAS-LIQUID CRITICAL POINT

M. Barmatz and P. C. Hohenberg
Bell Telephone Laboratories, Murray Hill, New Jersey 07974

(Received 15 April 1970)

The effect of gravity on measurements of the sound velocity and specific heat near
the gas-liquid critical point is calculated in detail, using the "linear model" para-
metric equation of state. It is found that the linear model is consistent with the best
available experimental data, both in gravity-free and gravity-dominated regions-.
with a choice of the exponent & equal to 0.06+0.02.

One of the Inost difficult problems encountered
in the study of critical phenomena is the analysis
of the "rounding" of the transition, which occurs
in all practical experiments. ' This rounding may
be caused by inhomogeneities, finite-sample ef-

fects, impurities, or nonequilibrium behavior,
and it is often difficult to separate the different
effects, or to estimate their magnitude. We re-
port here the detailed calculation of one such ef-
fect, the density inhomogeneity induced by grav-
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A(p, T) =F(p, T)+A.(T)+ V.(T)p, (2)

where Ao(T) and p, ,(T) are regular functions of
T with Iuo(T, )

= p, , The singular part of A may
be written as F = f (0)r', with f (0) determined'
by integrating the relation p= (BA/Bp)r.

ity near the gas-liquid critical point. ' The anal-
ysis is tractable because the effect is caused by

a precisely known force, whose strength can ef-
fectively be varied by changing the sample height.
Because of the divergence of the compressibility,
the effect is largest close to T,. However, it is
also most difficult to calculate there, since the
density distribution present in the sample de-
pends in a complicated way on the unknown equa-
tion of state."

Recently, a convenient parametric form was
proposed for "scaled' equations of state, and a
simple "linear model" (LM) was introduced. '
This model gives a satisfactory description of
experimental data on magnetic systems and

Quids, using a small number of parameters. We
have used the LM to carry out the first realistic
quantitative calculations of the gravity effect in

Quids. We have first tested the LM in a region
where gravity is negligible, and find that it is
consistent with the best presently available data
on the specific heat C„~' and the sound velocity
u, 'but only if the exponent e4 is equal to 0.06
+ 0.02. Once the value of o, is fixed, the behavior
of C„and u is entirely determined in the gravity-
dominated region, where the LM is also found
to be consistent with the data within the experi
mental uneer tainties.

The equation of state in the LM may be written
in the form'

[p(p, T) p. (T)]/I -. = «(I-~')r",
(p p. )/p. =-

(T T, )/T, = f= (-I-f 'O' )r, --
where p, is the chemical potential, p the density,
and T the temperature, and p, „p„and T, are
their respective critical values. The critical
exponents p and 5 have their usual definitions, 4

and the variables r and 9 are defined by Eq. (1).
The constants a and 0 are determined' fr.om ex-
periment, ' and b is given by the "minimization"
conditions 5 = (5-3)/(5-l)(1-2P). In view of the

scaling relations P(5+ 1)=2—a=y+2P, only two

of the critical exponents are independent; of
these, we shall take P from experiment9 and

1eave e as an undetermined parameter. The
Helmholtz free energy is

For a given sample height h, there is a charac-
teristic temperature interval to(h) (to be deter-
mined below), outside of which gravity effects
are negligible. Thus, for ~t(»to(h), the mea-
sured specific heat pC„along the critical isochore
is JOC„, or in magnetic notation, ' C~. %Ye have, '
for p=p ~

pc„/T =A (f(- + C„ t && 0, (3)

where expressions for the constants A' are given
in Ref. 5. It is important to note that in "simple"
scaling theories, " Co is regular at 7.'„ i.e.,
there is no additional discontinuous term in C„
apart from the term A'~t~ . Thus the value of
the "jump" C„(-t)-C„(t)at a point away from T,
[~t~ » t, (h)] depends only on A' and a, and may
be used within the linear model to fix the value
of the remaining unknown parameter, the expon-
ent o.. By performing such a fit for He4' and Xe,'
we have found the values o. = 0.07 and o. = 0.05,
respectively, with an uncertainty no larger than
0.005 t ~0

The zero-frequency sound velocity u and adia-
batic compressibility z, are found from the
thermodynamic relation"

~'=(p~) '=(p~, )
'

+ (T/p')(»/»), 'C ',

with gravity effects still neglected. As T ap-
proaches T„(p~z,)

' goes to zero and (T/p')(BP/
ST)z' approaches a constant, so that u'~ C„
We have calculated C„and u in the whole (p, T)
plane from the LM, and have compared the val-
ues with experimental data" in He4. The results
for u are shown in Fig. 1, where the theory has
been normalized to the data at t=3.9&10 ', by
adjusting the constants d A,/dT' and d'p. ,/dT'
[see Eq. (2)] for the best fit. The agreement be-
tween experiment and theory is satisfactory for
T not too close to T,. Similar agreement is ob-
tained with the C„data, ,

' using the same param-
eters. The small discrepancies, which appear in

Fig. 1 at t = 9.3 x 10 4 for p &p„are probably not
within the error of the experimental determina-
tion of p-p, . They must await a more careful
study, however, before they may be attributed to
breakdown of the LM. For the points closest to
T„ the disagreement is more pronounced, but,
as shown below, the gravitational corrections
are important in this region.

In a gravitational field, the chemical potential
p, of an isothermal fluid in equilibrium varies
with the vertical height z according to the rela-
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FIG. 1. Sound velocity versus reduced density for
He . The data of Ref. 6 at =1.8 kHz are denoted by
closed circles, triangles, and squares, corresponding
to t =3.9 x10, 9.3 x10, and 1.4 x10, respectively.
The solid lines represent the zero-frequency velocity
calculated from the linear model mthout gravity cor-
rections.

tion dIL(. =@de, where g is the acceleration of
gravity. Choosing the origin of z to be the height
at which p = p, (T) (i.e. , p = p, ), we may integrate
this relation and combine it with Eq. (la) to
obtain

z =- hao(8l- 8)r8,

with h, = p, ,/g. For a sample of height h, a
characteristic temperature interval t, (h), at
which gravity effects become important, may be
estimated from Eqs. (5) and (1) as t, (h) -=(h/~h, )"
For example, in He', with h=0. 5 cm, t, =2.5

x10 4.
The density distribution in the sample may be

obtained in principle by solving Eqs. (5) and (lc)
for 8(z, t), and inserting this expression into
Eq. (lb) to obtain p(z, t). The location of z = 0
with respect to the sample dimensions may be
obtained by integrating p(z, t) throughout the
sample volume to obtain the average density p.
Similarly, the local values of any other thermo-
dynamic function follow from the appropriate
parametric form, with r=t/(1 —& 82) and 8= 8(z, t).
For simplicity, we shall restrict the discussion
of gravity effects to the case where p is p„and
the sample has a uniform cross section. " Then
from the symmetry properties of Eqs. (5) and (1),
it may be seen that the origin of z always occurs

FIG. 2. Specific heat versus reduced temperature in
Xe for p™"=p~. The solid line is the gravity average
C, in the linear model. The points are the experimen-
tal data of Ref. 2. The dashed line represents the
theoretical C„ in the absence of gravity.

at the geometric center of the sample.
As noted by previous authors, "the "average"

specific heat C „ is not the average of the local
C„but rather the derivative of the average
entropy. '3 Thus, for p = p, '2 in a cylindrical con-
tainer of height h,

(6)

where S(z, T) is the local entropy. The differenti-
ation may be performed under the integral sign
by expressing S as a function of 8(z, t) and dif-
ferentiating at constant. z. We have calculated
C„numerically from Eq. (6) for the case of Xe,
with n=0. 05 (see above). The results for h= 1

cm are shown in Fig. 2, where they are com-
pared with the data of Ref. 2. It is seen that the
shape is accurately reproduced; the maximum is
correctly predicted to occur at a temperature
t = -4.5~10 '= —0.3to, which is below T„and
the absolute value of C, at T, is correctly given,
to within the accuracy of the experiment. '~ In
particular, we consider it significant that the
value of o. which was fitted to the jump in C, in
the gravity-free region also yields a value con-
sistent with experiment at T,. For o. =

—,', for
instance, the LM would predict a value C„=279
Z/mole K at T„and a jump AC„= 142 Z/mole K
at Itl =10 ', both of which are quite far from the
experimental values (see Fig. 2). Thus the lin-
ear model self-consistently chooses the value
o. =0.05+0.01 in Xe. It is also worth noting that
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although the same exponent ~ was used above
and below T„an "apparent exponent, " deter-
mined by a power-law fit to the solid line in Fig.
2 over a limited range of t, would be less than o.

for T & T, , and greater than e for T&T,.
We have also calculated C„ in He4 and Ar and

find theoretical curves which are, in appropriate
reduced units, quite similar to those in Fig. 2.
Comparison with the He' data of Moldover' re-
veals certain disagreements in the gravity-af-
fected region very close to T„which we attribute
to experimental errors, uncertainties in the val-
ue of T„and a departure from ideal cylindrical
geometry. In the case of Ar, when we compare
our theory with the data quoted by Berestov,
Giterman, and Malyshenko, ' we find serious
disagreements in the shape of the curve, as well
as the value of the maximum in C„and the mag-
nitude of the gravity correction away from T,.
We believe that these discrepancies are due to
systematic experimental errors. The theory of
Berestov, Giterman, and Malyshenko' is based
on an equation of state which is known to be in-
accurate near T„and yields results for the grav-
ity effect which are not quantitatively correct.

In order to find the "average sound velocity" u,
as measured by a resonance experiment under
gravity, we must calculate the normal modes of
the resonator, with a given local sound velocity
u(z). To do this, we have solved the wave equa-
tion numerically by a method devised for us by
Wasserstrom. " The results for the lowest radi-
al mode' of a cylindrical resonator are shown in
Fig. 3, along with experimental data' in He'.
The general shape of u vs t is similar to the in-
verse of C„, except that the minimum occurs
above T,." Since no adjustable parameters were
used in Fig. 3 [the parameters of the LM were
determined entirely from data in gravity-free re-
gionse'7''], the results are encouraging, but more
extensive and precise data are needed very close
to T, before the LM can be tested critically in
the gravity region. In addition, nonlocal effects, "
leading to dispersion, ' are not entirely negligible
in this range and must be accounted for in detail.

We have also calculated u in CO, for a height
of 4.26 cm, as used by Feke, Fritsch, and
Carome, "and find that the gravity corrections
are appreciable in those experiments [(ii—u)/u
= 6% at T T, = 0.02 K], and ma—y partly explain
the small value of e quoted by these authors.

In conclusion, we have used the LM to carry
out the first realistic calculations of gravity ef-
fects near the gas-liquid critical point. The best
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FIG. 3. Sound velocity versus reduced temperature
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presently available data on C„and u are consis-
tent with the LM in He' and Xe, in both gravity-
free and gravity-dominated regions, with an ex-
ponent +=0.06+0.02. The value o. =

—,', on the
other hand, is inconsistent with the LM, although
it is by no means ruled out by the experimental
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whether the slight disagreements between experi-
ment and theory found by our analysis are sig-
nificant. If they are, the model will have to be
modified, and the exponent e may then take on a
value different from 0.06. We emphasize, how-
ever, that even in this case the parametric form
can still be used for the modified equation of
state, and the present methods may be applied to
a calculation of gravity effects. Adequate account
of such effects is of course crucial to any ac-
curate analysis of experiments very near the
critical point.
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The stability of ballooning modes is investigated in the neighborhood of the magnetic
axis of an axisymmetric toroidal configuration of the Tokamak type. It is shown that the
stability criterion for these modes is the same as that for localized modes.

A purely poloidal configuration of the multipole type with closed magnetic field lines and an average
magnetic well may become unstable when the ratio P of the kinetic pressure to the magnetic pressure
exceeds a critical value. The unstable perturbations have larger amplitude in the regions of unfavor-
able curvature of the field lines than in the regions of favorable curvature and are called ballooning
modes. On the other hand, for toroidal configurations with rotational transform (Tokamak, Stellara-
tor) the magnetohydrodynamic stability problem is usually studied with the so-called localized criteri-
on. ' ' The corresponding perturbations are much more localized near a magnetic surface than the
ballooning modes, and in the case of an axisymmetric discharge having magnetic surfaces with circu-
lar cross sections it is found' ' that their stability is almost independent of P.

The purpose of the present work is to derive a stability criterion against ballooning modes for axi-
symmetric toroidal configurations with current parallel to the magnetic field lines to provide a rota-
tional transform. Since all perturbations are easily stabilized by shear of the field lines, we restrict
our calculations to the neighborhood of the magnetic axis where shear is negligible.

In cylindrical coordinates r, y, z, the axisymmetric equilibrium magnetic field is

T(y, z) 1B= ' e~ ——e~&&V((r, z),r


