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A phenomenological model of electron-proton scattering is developed which can ac-
count for the general qualitative and quantitative features of the data. Some interesting
links between the elastic and inelastic form factors are discussed.

Electron scattering has proven to be a key tool
in understanding the basic structure of matter.
As evidenced from the history of atomic and nu-
clear physics, electron beams provide an ideal
microscope for "seeing" the possible constitu-
ents of the target. ' It is presumably with this in
mind that several authors' have attempted to in-
terpret the recent Stanford Linear Accelerator
Center- Massachusetts Institute of Technology
(SLAC-MIT) electron-proton scattering experi-
ments' in terms of basic proton constituents
(called "partons"). In this paper we wish to de-
scribe a crude phenomenological model of the nu-
cleon whose basic physical ideas have much in
common with such "parton" models but whose
caleulational techniques are somewhat different.
The model is able to account for the general
quantitative features of both the new SLAC-MIT
data as we1.1 as the older elastic data. ' Some in-
teresting relations between these two types of ex-
periments ean also be deduced. It is hoped that
in a later paper some correlations with purely
hadronic processes can be discussed.

Before describing our model let us briefly re-
view some of the salient features of the data. In
the SLAC-MIT experiment high-energy electrons
are scattered from a proton target and detected
without regard to the final hadronic state. For a
given momentum transfer squared (q') and ener-
gy loss (E,-E2) the mes. sured cross section in
the laboratory system can be described in terms
of two form factors, 8", and 8', :

variable x -=-q'/2v only. (b) For a given value
of W -=(p+q)', W, (q, v) falls off slowly with q', '
in sharp contrast to the behavior of the elastic
form factors. (c) vW, (x) is a smooth function of
x which is large in the sense that the integral
over v at fixed q' is of the order of magnitude of
the Mott cross section. (d) The equivalent virtu-
al photoabsorption cross section is mostly trans-
verse in character.

Now to our model. Point (c) strongly suggests
that very massive virtual photons interact locally
within the proton. This can be simply described
by hypothesizing the existence of pointlike con-
.stituents. The nature of such objects ("partons")
will not be specified much beyond this. They
could be quarks or possibly the bare quanta of
"old fashioned" field theory. It is not impossible
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[W3(q', v) cos'-, 8

+2W, (q', v) sin'29],

where we have introduced the invariant v = p q
=M(E,-E,) and the laboratory scattering angle,
8, which is given by q' =4E,E, sin'20. Elastic
scattering corresponds to the special case where
each W~ contains a factor 6(v+-,'q'). The data.
show the following general features: (a) vW, (q',
v) scales; i.e., for large values of -q' and v,
vS', becomes a function of the dimensionless

p+q

FIG. 1. {a) Model description of the inelastic scat-
tering showing relevant kinematics; P implies an in-
coherent sum over possible partons. {b) Model de-
scription of the elastic scattering, The electron lines
have been suppressed.
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that they are actually real hadrons whose elastic form factors happen to approach constants asymptoti-
cally. This at least would eliminate the need for an explanation as to why they are not seen I If one is
unwilling to accept such perversities in nature, then one must invoke the existence of some kind of
final-state interaction which magically turns "partons" into real hadrons. Since the final state is pre-
sumably complete one might argue that this final-state interaction must turn one such complete set in-
to another and should therefore be "of order unity, " thereby not grossly affecting the general charac-
ter of the results.

The scattering process is pictured symbolically in Fig. 1(a); this is not necessarily to be interpret-
ed as a Feynman graph. The symbol Q is meant to imply an incoherent sum over the possible differ-
ent types of partons (e.g., over three different types of quarks or maybe over those hadrons whose
ela.stic form factors do not vanish asymptotically).

It is well known" that some of these partons must have nonzero spin in order that the transverse
cross section (or, equivalently, W, ) be nonvanishing. However, for W, such contributions are very
similar in nature to those from scalar partons (they are, in fact, identical for spin-2 particles). So,
for simplicity, we shall concentrate on W, and assume that there is only one type of parton and that it
has zero spin. The relevant cross section ean be expressed in the form
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where Q is the effective parton charge, Pq (PI) its initial (final) momentum, and I' =(2pz+q) u its elec-
tromagnetic vertex; t„, is a conserved tensor derived from the electron polarization sums:

tu~ q gu~ quq~ +(k~+k2)u(k~+k~)»

where k, (k,) is the initial (final) electron momentum. The Lorentz scalar f (P;) is a function of the in-
variants t =-pz', the square of the virtual parton mass, and M&'=- (p-p~)', the square of the residue
mass. An approximate physical interpretation of f(t, M~ ) can be inferred from the observation that

where b, (t) is the parton propagator and v(t, M~') is a suitably normalized parton-proton total cross
section: f(t, M&') is the amplitude for an unpolarized proton to break up into a virtual parton of mass
v't leaving behind a, residue of mass M&. We evaluate the Lorentz scalar tu" F„I',=41u"p~„pi„ in the
proton rest frame and assume that for this part of the scattering process, the parton is near its mass
shell. Such a condition is, in fact, required in the numerator of the integral in Eq. (2) if we enforce
gauge invariance (i.e., in some average sense, P = ul, ', where y. is the rest mass of the parton). It is
now straightforward to isolate 8', :

2
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When -q and v become asymptotic, one can show that the following limits are valid provided 2v(1-x)
»M'. W~q~, - v, t,„--2v--~, (Mz'), „-W'- ~, and, for a givenMN',

IIl i 11 M~ 1 g M

Hence, if f(t, M&') is sufficiently convergent, and the condition 2v(l —x)»M' is satisfied, then the inte-
gral in (4) can only depend upon x when -q' and v become large and we are naturally led to the scaling
law for vW, . By studying Eq. (4) as a. function of t;„one can already see that it has many of the prop-
erties one would like. For instance, it is nonvanishing at x =0, vanishes at x =1 (since, in that case,t;„-—~), and is maximized when x =1—(M~)/M, where (M~) is some suitably defined average value of
M~. As a specific example, suppose that the major t variation of the integrand is dominated by the
propagator function A(t) which, for simplicity, we take to be (t p, ') '; then, from—Eq. (4), we have

This expression is not expected to be valid near x =1 since, as indicated above, that region is sensi-
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tive to the asymptotic t behavior of f(t, M~') and there is no reason to expect the domination of b(t) to
continue out to such large values of t. This observation will be important when we discuss the elastic
form factors. A value for p can be extracted from the data by observing that Eq. (6) leads to the con-
dition that the combination x(1-x) E(x) is maximized when x = p. /M. A graphical plot of this function
yields the value p, -400 MeV; this can be interpreted as some average value of the parton masses.
By choosing a specific form for 0 it is not difficult to obtain a good fit to the data. We thus see how

the dominance of the parton propagator leads to a natural understanding of the general shape of vR', .
In order to understand the size of vW, we turn to the problem of sum rules. These are derived by

demanding that the elastic form factors, which we crudely represent by diagrams of the type in Fig.
1(b), normalize correctly to the proton charge at q' =0. Using similar approximations to those used
in the "calculation" of W„we write (again assuming, for simplicity, only one type of parton)

d4;
(2p+q) pF, (q') =Q 2,

'.(2p;+q)„f(p;)f(p;+q). (7)

At q =0 this leads to the normalization condition

(8)

W, can be expressed in a similar form:

u'. (»*, ~) = »u QJ,„*;f'(0;)»((P;+»)* u')-
Now in the asymptotic region the argument of the
6 function becomes pz'-p'+ 2q, (pq'- (p; if' Q/
ip;((q()+q' and the 6 function can be unambigu-
ously removed by an integration over q' at fixed

J. &»*u'.(»*, u) =&u*QJ,„;f*(u;)

The normalization condition (8) together with the
requirement that (7) be gauge invariant leads,
after some manipulation, to the sum rule

JQ vW, (x)dx =Q(p/M)'.

If we use the value of p, determined from above
(-400 MeV) and set Q =1, we obtain -0.16 for
this integral, which is in remarkable agreement
with experiment. " The sum rule (11) differs
considerably from the analogous nonrelativistic
(NR) one. ' To see how this comes about we note
that in the NR region we can safely set p~

—
p

and p; -0 almost everywhere. However, (p~( is
no longer necessarily small compared with Iq i

so an integration over q at fixed v will now intro-
duce the ambiguous factor (P;/q ( and no inter-
esting sum rule can be derived. On the other
hand, since p -p»q, the 6 function can instead
be removed by an integration over qo at fixed q';
only the harmless factor (2P ) '-(2p) ' will be
introduced. A comparison with the normaliza-
tion condition (8) then reproduces the "classical"
sum rule:

f~ W2(q2, v)dv —=Q.

Finally, we shall show that, within this model,
the asymptotic behavior of E,(q') is correlated
with the threshold (x-1) behavior of vW, (x).' To
see this, we note that Eq. (7) tells us tha. t the
asymptotic behavior of F,(q') is governed by the
large-t behavior of f(t, M~'). However, as re-
marked above, this also determines the behavior
of vW, near x =1.' To be more specific, suppose
that

f(t, M~'), =t- g(M ');

then from (7) we see that

E,(q'),.- =(-1/q'),
while from (4),

vW2(x); (1-x)2

If the elastic form factors were to fall exponen-
tially, e.g. , E,(q')-e ' Q ), the relation is
not quite as clean; we would then expect vW,
-(1-x)' 2e ' t' ) with a' different from a '

We have, of course, throughout this paper
tacitly assumed that contributions from process-
es in which the physical proton directly mutates
into a single parton are unimportant. These
correspond to renormalization graphs in pertur-
bation theory and unless canceled would lead to
a nonvanishing F,(q2 - -~). We must therefore
demand that the direct proton-parton transition
amplitude be zero. If we are willing to postulate
nonvanishing asymptotic elastic form factors for
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mesons (thus identifying partons with mesons)
the question of a parton-proton transition ampli-
tude becomes irrelevant. Such a conjecture is
clearly more natural for mesons than for baryons
since we know experimentally that Fi(q2- -~) =0
for the nucleons. An immediate experimental
consequence of this hypothesis is that in the in-
elastic experiments the fast particles in the final
state should be mostly mesons. It should be
noted that the absence of such a direct coupling
implies the absence of "s-channel" type contri-
butions to the 8"z. In the small-q' region, how-

ever, such contributions need no longer be small
since they will not now be damped by the physical
baryon elastic form factors. For this reason
one should not expect the real photoabsorption
limit to correspond necessarily to the x =0 point
in the scaling limit.

We conclude with a few brief remarks about

gauge invariance. Although we have a very crude
model we have consistently required the result-
ing hadronic current tensor to be conserved. It
is definitely a nontrivial task within this model
to derive an expression which is manifestly
gauge invariant and which does not require cur-
rent conservation to be forced upon it in an "un-
natural" way. There were several important
problems such as this that were not fully dis-
cussed in this paper; in particular, we did not
attempt a calculation of the parton spin contribu-
tions which determine 8',. In a forthcoming pa-
per we intend to discuss such problems in detail
and to elaborate and extend some of the ideas
presented here. Meanwhile I would like to thank

several of my colleagues for valuable discus-
sions, in particular, Dr. F. A. Berends, Profes-
sor J. I. Friedman, Dr. R. E. Peierls, and Pro-
fessor V. Weisskopf.
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R. E. Taylor, Qid. , pp. 251-260.
4J. G. Rutherglen, ibid. , pp. 163-176.
As pointed out in Ref, 2 this follows from (a}.
It is interesting to note that in the nuclear, or non-

relativistic, limit where a{MN ) peaks at some particu-
lar value of M&( M-p), our results agree with the
standard one, namely that vW2 is maximized at x -p/

However, our model suggests that in the extreme
relativistic region it is x(l-x) vW2(x), rather than
vW2(x), which peaks nes, r x p/M.

~It should be pointed out that the precise factor on the
right-hand side of Eg. (11}is not meant to be taken too
seriously. However, the calculation leading to Eq, (11)
does point to the possibility that there are important
corrections to the NR result. The latter would suggest
that the constituents have fractional charges (see
Ref. 2).

While we were writing this paper, a preprint by
S. D. Drell and T.-M. Yan I,Stanford Linear Accelera-
tor Center Report No. SLAC-PUB-699 (unpublished}]
reached us. They prove a similar result using their
field-theory model {see Ref. 2}. The result can also
be conjectured from a sidewise dispersion relation for
the I 's.

We must, of course, ensure that lt~„j« it~» I,
i.e. , 2v{l-x)»M, which is a condition for scaling.

Note that our expression for vW2, Eq. (6}, is not
inconsistent with the results of this paragraph, since
when x—1 we expect the behavior off(t, M~ ) to be
modified by the asymptotic t dependence of a(t, M& )
For nonasymptotic values of t {which effectively means
x not near 1) c(t,MN } is assumed to behave smoothly
with t so that f(t, Mlv ) is dominated by A(t)
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