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ature of 3.24 mdeg K. This is just below the low-
est temperature which we have obtained. Experi-
ments down to lower temperatures have to be
done in order to separate the crystal-field —in-
duced (local) ordering phenomenon from the co-
operative ordering phenomenon.

No such quadrupole splitting is to be expected
in PrTl„and the only reason for nuclear order
in this compound should be the indirect coupling
between nuclei outlined above. The exchange in-
teraction constant 8 deduced from the Van Vleck
susceptibility and the crystal-field splitting is
less than (0.14'K)k, indicating that cooperative
nuclear order should not occur above 0.29 mdeg
K. This is not in disagreement with our observa-
tions, which indicate no nuclear ordering above
3 mdeg K. Further experiments for the detection
of the cooperative ordering phenomenon are be-
ing planned.

We would like to thank C. C. Grimes and W. M.
Walsh, Jr. , for their constant interest and en-
couragement during this work.
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Detailed neutron-scattering measurements have yielded the behavior of the scattering
function S(q, ~) for both the transverse and longitudinal fluctuations in the critical region
of the uniaxial antiferromagnet MnF2. The static wavelength-dependent susceptibilities
are measured both above and below T~. The relaxation rates for the longitudinal fluc-
tuations are found to be correctly described by dynamical scaling both above and below
TA . The scaling functions Q~(q/~) applying respectively above and below T~ are deter-
mined explicitly.

We have made a detailed neutron-scattering
study of the static and time-dependent correla-
tion functions in the critical region of the uniax-
ial antiferromagnet MnF, . The static suscepti-
bilities, both longitudinal and transverse, and
the longitudinal and transverse correlation lengths
have been determined for the first time in a mag-
netic system both above and below the critical
temperature T~ = 67.46 K. The relaxation rates
for the longitudinal and transverse fluctuations

have been measured throughout the critical re-
gion. It is shown for the first time that the theo-
ry of dynamical scaling' provides a very good
description of the longitudinal relaxation rates
both above and below T~. Our work follows the
initial verification of dynamical scaling by Lau
et al. ' for the paramagnetic region of the iso-
tropic antiferromagnet RbMnF, . In the present
work on MnF„which constitutes the most com-
plete investigation of correlations near a second-
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order magnetic phase transition yet undertaken, the scaling functions Q, (q/v) applying respectively
above and below T~, are determined explicitly.

An essential part of the present work is the separation of the transverse and longitudinal fluctua-
tions. To see how this is done, note that the cross section for the magnetic scattering of unpolarized
neutrons is given by'

K'
~

Z(ff)
~

' g (5 „, If.k-,)S"'(q, ~) .

Here co and K= K; -K& correspond respectively to the neutron energy and momentum loss, and q = K
2z-r, with 2m~ a magnetic reciprocal lattice vector. With ~ along [001], the curly bracketed term in

(1) is such that fluctuations in each of the two transverse directions contribute to the scattering, with

no contribution from the longitudinal fluctuation. With T along [100], however, fluctuations in the lon-
gitudinal direction and in one of the transverse directions contribute. Thus, by investigating both the

[100] and [001] reflections, the transverse and longitudinal scattering functions S, (q, &u) and S„(q, &u),

respectively, may be separated.
We take the static cross section to be of the Ornstein-Zernike form, for both the longitudinal and

transverse contributions. We assume the frequency dependence of S„(q, &u) to be described by a single
Lorentzian curve centered at u&=0, while the frequency dependence of S, (q, ~) is taken to consist of
the sum of two Lorentzians displaced symmetrically about &@ =0 by an amount &uo(q, T) (which may van-
ish). The cross sections for each of the two reflections studied then take the form

(dodtd)&„,
&

( )Ef A(», ] 1 I'

K; (z +q') 2 I' '+((u-(u )' I' '+((u+(p )' (2)

I'~

(0o) I d + ((d + (do)

for quantities derived from them, correspond to
standard deviations. Excellent fits were obtained
for all of the observed data.

Using the fluctuation-dissipation theorem, rel-
ative values of the static wavelength-dependent
susceptibilities may now be obtained from

(k „T) 'A [ioo]
X ]t ~q& T)~ 2+ 2

s&
~~

+q (4a)

Ti~ ( o ) 'A[oo~]

Kg +g
(4b)

In particular, relative values of the "staggered"
susceptibilities are calculated from (4) by setting
q=0. In Fig. 1 we plot the results for the longi-
tudinal staggered susceptibility X

~, (0, T) both
above and below TN. This figure includes data
obtained in our earlier quasielastic experiment, '
the constant of proportionality being adjusted for
agreement with the present data at the highest
temperature. On fitting the combined data of
Fig. 1 to Xii(T) b+(T Tw) & for T&T~—and X„(T)
= b (T~-T) & for T & T~, we obtain y = 1.27
+0.02, y'=1.32+0.06, and b, /b =4.8+0.5.

The behavior of the longitudinal wavelength-
dependent susceptibility for qt0 may be described

~(„T)&r Ar»o] I'ii »rioo] 1

where the factor B(&u, T) = km[1 —exp( —5&@/k~T)]
expresses the requirement that the cross section
for a neutron energy loss must exceed that for an
equal gain by the Boltzman factor. With the ex-
ception of A. , which we assume4 to be unity, the
parameters appearing in Eqs. (2) and (3) are de-
termined by means of a least-squares fitting pro-
cedure which folds the experimentally determined
instrumental resolution function' with one of the
cross-section expressions written above, and

compares the result with the experimental data.
Note that parameters At„,), A(„,), Kg, and K,

~

depend only on the temperature 7, while I"„ I ~t,

and cu, are to depend on both q and T.
Data were collected for incident neutron ener-

gies of 6.6 and 13 meV, at wave vectors from q
= 0 to q = 0.258 A ' = (0.2 5)2p~»o] . This was done
at eleven different temperatures in a 16 K re-
gion centered on the critical temperature. The
cryostat and temperature control techniques,
providing 1-mdeg stability at the sample, are
described elsewhere. ' The parameters A&oo»(T),
z, (q, T), I', (q, T), and &uo(q, T) were first found
from a fit to the pure transverse [001] data.
Then, a fit to the [100] data permitted the deter-
mination of A&,o»(T), z „(T), and I',~(q, T). All er-
ror limits quoted below for these quantities, or
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FIG. 1. Temperature dependence of the longitudinal
staggered susceptibility above and below T~. The
open circles are obtained from the present inelastic-
scattering data, the closed triangles from an earlier
energy-unresolved scattering experiment (Bef. 6),
normalized to the present data at 76'K.

by EIl. (4a) by specifying K „(T). On fitting our
data by K

II (T) K+(T Tw)" for T&—TN and K II(T)
(Tz-T)' for T&Tz we find

v = 0.634 +0.02, v' = 0.56 + 0.05,

K, = (0.032+0.004) A ' ('K)

= (0.055+0.006) A ' ('K)

Our data for the transverse susceptibilities,
the transverse relaxation rates, and the spin-
wave energy gap, will be presented in a more de-
tailed communication.

Of paramount interest here is the behavior of
the longitudinal relaxation rates I" „(q, f). Our
results are shown graphically in Fig. 2. Above

T~, the decay rates vary rather slowly with tem-
perature, except for q=0 where we find an es-
sentially linear temperature dependence, T & T~:

I „(0, T) = (2.1+0.1 meV)

FIG. 2. Belaxation rate of the longitudinal spin fluc-
tuations as a function of temperature and wave vector
in the critical region.

The situation is completely different below T~,
where FII apparently vanishes as q-0 at all tem-
peratures. Our data are consistent with a diffu-
sive behavior I'„(q, T) -=D(T)q'. Actually, finite
instrumental resolution prevented us from mea-
suring 1

II
exactly at q=0, since a magnetic Bragg

peak dominates the scattering there.
For T = T~, our data are well fitted by the ex-

pression

T„(q, TAI)
= (7.0+0.9 meV)q' ' ', (7)

where q is expressed in A '. Equation (7) cor
rectly describes our data for 0.026 A '&q&0. 2

A '. The work of Riedel and Wegner predicts
a change in the power-law behavior close to the
critical point due to the effects of anisotropy. On

account of resolution limitations, it is simply
not possible for us to say whether a different
power law might apply for smaller q values.
Similarly, although Eq. (6) correctly describes
our data for 0.5&T—T~&S'K, we simply cannot
say whether a different exponent might apply for
smaller T-T~ just above the critical point.

Dynamical scaling predicts' that the exponent
expressing the dependence of l „(0, T) on K II(T)
above T~ should equal the exponent expressing
the q dependence of I'II and T~. Indeed, using
(6) and (5) we find, for T & T~,

l »(0 T) = (6 6 ~0 6 meV)[KII(T)]~'49'0'7 (8)

where K „ is expressed A '. The exponents in (7)
and (8) do in fact agree to within experimental
error. More generally, dynamical scaling pre-
dicts that

X[(T T )/T ]
0951005 (6) I'„(q, T) = [K,, (T)] Q, [q/K „(T)],
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FIG. 3. A replot of the data of Fig. 2 in the form
suggested by the theory of dynamical scaling. The
ordinate is the scaled longitudinal relaxation rate, the
abscissa the scaled wave vector. The two curves are
the two branches of the longitudinal dynamical scaling
function.

where the + signs apply respectively above and
below T~. To test Eq. (9), we have replotted the
data of Fig. 2 in Fig. 3. Here, the ordinate is
I" „(q, T)/[~ „(T)], and the absicissa is q/[K ~~ (T)].
In making this plot, we have taken z = —,', which
is consistent with both (7) and (8). The data for
T & T~ and T & T~ are represented respectively
by the solid and open circles. Note that all of
the data of Fig. 2 are present in the two curves
of Fig. 3. The two curves represent the two
branches of the scaling function; they merge for
large q/v, as must be the case, since this rep-
resents the behavior close to T~. For each
branch, the data points are intermixed over the
curve: There is no systematic departure from
it as a function of T or q. This kind of plot is
reminiscent of the original representations of
static scaling phenomena. '

The two branches of the scaling function have
quite different behaviors for small values of q/w.
Thus, above T~ we find

Q, (q/~) = [6.9+ 2.6(q/~)'+ ~ ] meV A"'", (10a)

while below T~ we have

0 (q/K) = [1.8(q/w)'+ ~ ~ ] meV A"'. (10b)
The absence of the constant term in (10b) is a
reflection of the diffusive behavior observed be-
low T~. A theory for this has been advanced by

one of us (P.H. ) and, independently, by Halperin
and Hohenberg. " According to this view, the
diffusive central peak for the longitudinal

fluctuat-

ionn below T~ is a manifestation of thermal dif-
fusion taking place within the spin system. The
diffusion constant D(T) should then equal the ra-
tio of the spin system thermal conductivity to
the magnetic specific-heat density, in analogy
with the I andau-Placzek theory for fluids.

In conclusion, we have made a complete study
of the static and dynamic correlations near the
second-order phase transition in MnF, . We find
that dynamical scaling provides a remarkably
successful description of our data. The scaling
functions applying respectively above and below
TN are found to have quite different behaviors
for small values of q/a.
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