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We are then left with two equations to solve' for A and 8:

1+ I g slIlg 1+ 5
-1 dX =Oq

+ XA+
(6)

where r, is the average particle distance and A and B are dimensionless parameters, linear in the un-
known Ag(r ) and g'(r, ) and Ag'(r, ).

In order to find an ana. lytic solution, we assume r, /'r, -0. Then Egs. (5) and (6) can be solved exactly
and we find A =12 and 8 =-54. With these values of A and 8 we calculate the excitation spectrum or,
equivalently, the sound velocity which turns out to be'

The sound velocity we find in this simple calculation is very close to the exact result, the only differ-
ence remaining being the factor 2 '" which does not occur in the exact result.

In conclusion, we show in this Letter that divergences in the potential can be consistently eliminated,
and that linear response theory can be used to obtain the excitation spectrum of a hard-sphere Bose
gas in a relatively simple way. We specialized for the case of extreme dilution in order to have an
analytic solution but, in principle, Eqs. (5) and (6) can be solved for any density.
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The critical slowing down of the diffusion in a binary liquid is calculated from the fluc-
tuation-dissipation theorem. The fluctuating current is the product of the local fluctua-
tions in concentration and velocity. Assuming statistical independence of these variables
yields results identical to those found by Kawasaki using another method.

The central idea in the dynamical scaling theo-
ry" of phase transitions is that the correlation
length is the same for static and dynamic proper-
ties. Calculations of the so-called "mode-mode
mixing" type" have been carried out on the bi-
n"-ry-liquid phase transition and give a concrete
example of how the static correlation length en-

ters the dynamical properties. The purpose of
the present note is to point out an alternative ap-
proach to the dynamics of the binary-liquid phase
transition, which is simply an application of the
fluctuation-dissipation theorem to the fluctua-
tions in particle current. By introducing a cer-
tain mode-decoupling approximation we obtain
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J(x, t) = s(x, t)v(x, t). (2)

We will use the terms density and concentration
interchangeably in referring to s(x, t). The sca-
lar product of the particle currents at the two
different space-time points is averaged over the
equilibrium thermal ensemble, and integrated
over all space-time differences. Equation (1)
is essentially the same formula as that used by
Mountain and Zwanzig' to study the critical diver-
gence of the thermal conductivity in a single-
component gas. In the latter case, the reduction
of the heat current to the simple form of Eq. (2)
is somewhat involved, and we therefore defer a
discussion of the liquid-gas phase transition to
another publication. ' Equa. tion (2) has a, simple
physical significance which is already familiar
in the theory of acoustic radiation pressure.
For example, if s is interpreted as the mass-
density fluctuation in a fluid and J is the nonlin-
ear contribution to the momentum density, then
when a longitudinal sound wave is being propagat-
ed in the fluid, Eq. (2) yields a, mean momentum
density which is second order in the amplitude of
the wave. This is found by using first-order lin-
earized hydrodynamics to relate the density and
velocity fluctuations. The average of sv then
yields the familiar result that the momentum den-
sity in a propagating sound wave is the energy
density divided by the velocity of propagation. In
the present case, we are not dealing with a sin-
gle propagating mode, but rather with a large
collection of thermally excited nonpropagating
diffusive modes. The essential point is, howev-
er, that any simultaneous fluctuations whatsoev-

results identical to those found by Kawasaki'
from his mode-coupling theory.

Throughout this paper we will be dealing only
with the low-frequency end of the concentration-
fluctuation spectrum, which results from the dif-
fusion of one component, the "solute, " through
the other component, the "solvent. " The trans-
port coefficient determining the width of this I o-
rentzian line is the conductivity, which we can
calculate from the fluctuation-dissipation theo-
rem" (or so-called "Kubo formula, ")

X = (6T) 'fd'21(J(2) ~ J(1)). (1)

As there is only one critical concentration it is
sufficient to deal only with the solute and leave
the solvent in the background. The solute parti-
cle current at the space-time point (x, t) is the
second-order product of the solute particle den-
sity fluctuation s times the local velocity v,

er in the density and velocity fields automatically
lead to nonvanishing contributions to the current,
according to Eq. (2). Such fluctuations in the cur-
rent then necessarily in turn give a contribution
to the conductivity in a,ccordance with Eq. (1).

In order to demonstrate how Eq. (1) can be ap-
plied to the present problem, we need to intro-
duce the equal-time density correlation function

G(x„)= (s(x„0)s(x„0)), (3)

i =(3r) 'f G(x)F (x)d'x. (5)

Because of the critical slowing down in the con-
centration fluctuations it has been possible to ap-
proximate their correlation function by the equal-
time correlation function of Eq. (3). Now the fre-
quency width of the concentration-fluctuation
spectrum is determined by the diffusion coeffi-
cient. This is obtained by dividing the conductiv-
ity by an appropriate thermodynamic function,
which in this case is c(sc/8m) z, where c and w

are the equilibrium concentration and osmotic
pressure of the solute, respectively. This static
response function is normalized by the equal-
time concentration correlation function accord-
ing to

c(ac/s~) T =T 'f G(x)d'x.

The ratio is the diffusion coefficient

(6)

D=
c(ec/sn) r

We note that the density fluctuations enter the
problem as a weighting factor in determining a
suitable average over the velocity correlation
field, as defined by the ratio of the two integrals
in Eqs. (5) and (6).

The time-integrated velocity correlation func-

and the time-integrated velocity correlation ten-
sor

E;,(x„)= f, dt„(v;(x„t,)vJ(x„t,)) (4)

At this point, we observe that the transverse
fluctuations in velocity do not lead to density
changes of the liquid and therefore have much
lower frequencies than the longitudinal velocity
fluctuations. They are consequently much more
effective in contributing to Eq. (4). Therefore
we neglect longitudinal velocity fluctuations, and
furthermore make the additional assumption that
the transverse modes are statistically indepen-
dent of the density fluctuations. This assumption
permits us to write the integrand of Eq. (1) in
the factorized form (where E is the trace of Ez~
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tion, describing random thermal excitation of
the transverse hydrodynamic modes, is

(8)

at x = a. This yields

r p. , = ,'(—3/4ma')' ff, ,d'x, d'x, E (x„)
=T 1 =T

27. sv e 6~ '0+
(14)

E(x) = T 1
(9)

We now introduce the correlation length $ by
means of the Ornstein-Zernike function which,
norma. lized according to Eq. (6), can be written
in the form

(10)

The average required in Eq. ('l) is readily found

to be (1/x)„,= ( ' which, substituted into Eqs.
(7) and (9), yields

D =T/6&q) =T p, &.

This result has already been obtained from the
mode-mode coupling theory by Kawasaki' who
has noted that p,

&
= (6m@))

' is identical to the
Stokes expression for the mobility of a sphere
of radius $ moving in a fluid of viscosity rl.

This relationship of the Stokes formula to the
present work can be elucidated by an approxi-
mate derivation of it, which also makes use of
the fluctuation-dissipation theorem, or Einstein
relation

T p, ,= ,' f, dt„(v(t,)-.v(t, )). (12)

Here v(t) represents the velocity of a sphere of
radius a at time t. The left-hand side of this
equation is the temperature times the mobility of
the sphere, while the right-hand side is the time-
integrated autocorrelation function of the velocity
of this sphere undergoing Brownian motion. Now

we can imagine the sphere to be made up of the
same kind of atoms as compose the surrounding
fluid, and we can estimate its velocity by averag-
ing over the velocities of all of the particles in-
side the sphere, disregarding the boundary.
Thus we substitute into Eq. (13) the approximate
expression

v(t) = (3/4ma') f d'x v(x, t), (13)

where v(x, t) is the unperturbed velocity field of
the fluid in the absence of any boundary condition

where T, g, and 5;J are the temperature, coeffi-
cient of viscosity, and Kronecker delta function,
respectively. (We use temperature units in which
Boltzmann's constant is unity. ) The trace of Eq.
(8) is

It is not worthwhile to evaluate the numerical co-
efficient because the boundary condition at the
surface of the sphere does perturb the velocity
field of the surrounding fluid, so that the Brown-
ian motion of the sphere is only qualitatively re-
flected by the velocity fluctuations of the unper-
turbed liquid. The purpose of this approximate
derivation of Stokes law is to demonstrate that
the velocity correlation function E plays qualita-
tively the same role in Stokes law as it does in
the critical diffusion problem.

Equations (5) and (6) can be generalized" to
finite wave number q by replacing one third of
the trace of the velocity correlation tensor by its
component in the q direction, which we indicate
by the unit vector q. Including a plane-wave fac-
tor of exp(iq. x) in the integrals gives then for
the ratio, after a straightforward calculation,
Fawasaki's result for the q-dependent diffusion
coefficient [where g(q) is the Fourier transform
of G(x)]

D(q) =&(q)/& 'g(q) =(+;;),'"',

T(1+z') 1 1 1—,+ ———, tan 'z
8mg) z' z z3

=6,„(q'+& ')'"~(z).T
(15)

Here we have introduced the dimensionless vari-
able z = qg. The dynamical scaling function

1 1 1
o(z) =f(1+z')'" —,+ ———, tan 'z (16)

expresses quantitatively the deviation from the
qualitative dynamical scaling rule" that $

' is
to be replaced by q in the short-wavelength limit
(z —~). The variation of &x(z) between these two
limits of o(0) =1.0 and o(~) =3n/8=1. 178 is ex-
hibited in Fig. 1 as a function of tan z. At inter-
mediate values of z, the Fourier transform of the
static correlation function G(x), via the combina-
tion ($ '+q')' ', gives a, measure of the "dis-
tance" in the plane of the variables $

' and q of
an arbitrary point from the critical point (g ', q)
= (0, 0). v(z) expresses the slight difference in
this measure between the dynamical and static
properties. As noted by Kawasaki, ' o(z) is sensi-
tive to deviations of G(x) from the Ornstein-
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noted that the decoupling approximation used
here is similar to that employed in paraconduc-
tivity theory" "where, however, its validity in
the critical region is questionable because of the
interaction of the modes. The neglect of mode
interaction in the present problem is reasonable
theoretically because of the presumably noncriti-
cal nature of the shear modes, and seems to
have been confirmed experimentally. " Finally,
it is a pleasure to acknowledge a helpful discus-
sion with Professor R. Zwanzig.

-I
tan z

FIG. 1. Dynamical scaling function 0.(c) vs tan q(.
The dimensionless variable z =q( is 27r times the ratio
of the correlation length ( to the wavelength of a fluc-
tuation 2m/q. In the long-wavelength hydrodynamic
limit o(0) = 1, while o (~) =8m/8 gives the deviation be-
tween dynamic and static scaling in the extreme non-
local limit.

Zernike form. It is worthwhile and straightfor-
ward to calculate this modification, but the re-
sults of the calculation are rather complicated
and will therefore be relegated to a more de-
tailed report. '

In summary, we have seen how the simple
physical picture of the nonlinear mixing of densi-
ty and velocity fluctuations, which is the basis
of the conventional theory of acoustic radiation
pressure, leads in the present case to fluctua-
tions in the particle current. It is then a straight-
forward task to calculate by means of the fluctua-
tion-dissipation theorem the conductivity corre-
sponding to these fluctuations. Generalizing this
approach to wave-number-dependent quantities
gives results in complete agreement with the
mode-mixing calculation of Kawasaki. The re-
sulting dynamical scaling factor o(z) confirms
the qualitative validity of the dynamical scaling
theory, "putting it into a precise quantitative
form. Exactly the same treatment can be given
to the heat-current fluctuations in a single-com-
ponent gas. ' In this case Eqs. (16) and (I l) de-
scribe the nonlocal critical slowing down at the
liquid-gas critical point. It should further be
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