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Including electron dynamics, P (=6 ~l6k ) can be
shown to be always negative for an ion-cyclotron wave,
hence the instability (Q. P ) 0) exists for all A values.

For an electron-cyclotron wave Eq. (4) is valid, hence
instability occurs only for 3c'0'l~&') 1 or in terms of

The peaking of the spectrum at 0.3~c may not occur
for the real ion-cyclotron wave because of the differ-
ent dispersion relation, as is mentioned in Ref. 4.
However, for the electron-cyclotron wave this effect
should exist because of the same dispersion relation
as assumed here.
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We use linear response theory to calculate the elementary excitation spectrum of a
dilute hard-sphere Bose gas. Our result differs by a factor 2 ' from the exact result.

The energy spectrum of elementary excitations corresponding to density fluctuations of a many-par-
ticle system is given by the values of energy which correspond to the poles of a generalized suscepti-
bility. ' Recently Singwi et al. ' proposed a self-consistent way of calculating the susceptibility of a
many-electron system which seemed very promising in treating divergent potentials, but its use was
restricted to systems in which the pair distribution function was known in advance. ' The purpose of
this Letter is to apply Singwi's theory to divergent potentials and derive the excitation spectrum from
first principles, i.e., without the use of any parameter but the particle-particle potential and the den-
sity. %e chose the worst possible potential, namely, the hard-sphere interaction, and we take the
particles to form a dilute Bose gas.

As in Ref. 2 we take the susceptibility to be of the form

)(.(q, ~)
l -4(q)X.(q, ~)'

where X, is the noninteracting susceptibility. In the limit of small q, ((q) is given by

g(q) = —
3

~ drg(r) [sin(qr)-qr cos(qr)]
4m dp.o

id'Y 2 d'Y (2)

It is very easy to show that, at zero temperature, the relation between the energy of the excitation
and g(q) is, with e(q) =5'q' j2m and a, density n,

E(q) = Ge(q))'+ 2«(q) I(q))'" = ~(q)/~(q),

the well-known Feynman expression for bosons. ' To calculate g(q) we substitute in Eq. (2) the ha, rd
core for y, putting

dp = lim (-. i)6(r-r, ),

where r, is the hard-core diam. We get for g(q) the following expression:

e(q) = (2~/3q')) fg(r. )~(qr. ) +r.g'(r. )0(qr.)),
where

a(x) = 3 sinx-3x cosx +x' sinx, P (x) = sinx-x cosx.

(4)

We assume, at this point, that g(r ) =g'(r ) =0. Thus, the products ig(r ) and Ag'(r ) are not deter-
mined. To find out what their values are we calculate g(r) and g'(r) from g(q), ' and impose that g(r, )
=g'(r, ) =0, consistent with our previous assumption.
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We are then left with two equations to solve' for A and 8:

1+ I g slIlg 1+ 5
-1 dX =Oq

+ XA+
(6)

where r, is the average particle distance and A and B are dimensionless parameters, linear in the un-
known Ag(r ) and g'(r, ) and Ag'(r, ).

In order to find an ana. lytic solution, we assume r, /'r, -0. Then Egs. (5) and (6) can be solved exactly
and we find A =12 and 8 =-54. With these values of A and 8 we calculate the excitation spectrum or,
equivalently, the sound velocity which turns out to be'

The sound velocity we find in this simple calculation is very close to the exact result, the only differ-
ence remaining being the factor 2 '" which does not occur in the exact result.

In conclusion, we show in this Letter that divergences in the potential can be consistently eliminated,
and that linear response theory can be used to obtain the excitation spectrum of a hard-sphere Bose
gas in a relatively simple way. We specialized for the case of extreme dilution in order to have an
analytic solution but, in principle, Eqs. (5) and (6) can be solved for any density.
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For the relations between g(q), S(q), andg(~), see Ref. 2.
We extended the form of P(q), valid for low q's, for all q values. The argument is that the low-q part is the

most important contribution to Eqs. (5) and (6).
In the small-q region of the spectrum, E(q) is linear with q, as can be easily checked in Eq. (3) since Q(q) is

independent of q. We thus have a sound-wave spectrum where c =E(q)/Kq.
See Huang, Ref. 5, pp. 409-434.
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The critical slowing down of the diffusion in a binary liquid is calculated from the fluc-
tuation-dissipation theorem. The fluctuating current is the product of the local fluctua-
tions in concentration and velocity. Assuming statistical independence of these variables
yields results identical to those found by Kawasaki using another method.

The central idea in the dynamical scaling theo-
ry" of phase transitions is that the correlation
length is the same for static and dynamic proper-
ties. Calculations of the so-called "mode-mode
mixing" type" have been carried out on the bi-
n"-ry-liquid phase transition and give a concrete
example of how the static correlation length en-

ters the dynamical properties. The purpose of
the present note is to point out an alternative ap-
proach to the dynamics of the binary-liquid phase
transition, which is simply an application of the
fluctuation-dissipation theorem to the fluctua-
tions in particle current. By introducing a cer-
tain mode-decoupling approximation we obtain


