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OBSERVATION OF SELF-TRAPPING INSTABILITY OF A PLASMA CYCLOTRON WAVE
IN A COMPUTER EXPERIMENT
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(Received 10 April 1970)

The exact behavior of a modulated cyclotron wave in a plasma is traced in a numerical
model to study the self-trapping instability represented by the nonlinear Schrodinger
equation with an attractive potential. The instability is found to be explosive in that the
wave collapses at a much faster rate than the prediction of the perturbation solution.

In a recent paper, ' Taniuti and Washimi have
shown that a modulated whistler wave becomes
unstable owing to its self-action produced by the
third-order nonlinearity. They derived a nonlin-
ear Schrodinger equation for the modulation am-
plitude y(x, t) of a whistler wave represented by
y(x, t) exp[i(kx —cut) j and showed that the equiva-
lent potential term is attractive in sign.

If a nonlinear dispersion characteristic &u(k, a')
is known, where a is the amplitude of the wave,
the modulation amplitude of a finite amplitude
wave rp in the nonlinear dispersive medium can
generally be expressed by the nonlinear Schro-
dinger equation of the following form'.

where a =-6~/aa', P =-,'6'~/6k', and y, is the in-
itial value of y. The condition of self-trapping
can easily be derived from Eq. (1) as the condi-
tion of attractive potential,

(9(u/sa') (6'(u/ak') & 0.

Using this concept Sivasubramanian and Tang'
have derived the unstable region in the disper-
sion relation for waves in a cold magnetized plas-
ma. Hasegawa' has shown that the sign of the
Ba&/Ba' term, which is crucial in deciding the
stability, can be changed arbitrarily in the pres-
ence of a coupling to a nondispersive low-fre-
quency mode. Tam' and Petviashvile, ' using
somewhat different approaches, have shown, re-
spectively, that obliquely (with respect to mag-

netic field) propagating whistler and ion-acoustic
waves face similar instabilities.

A mathematical solution of Eq. (1) for an at-
tractive potential is not available, however, so
the actual time evolution of the instability is still
unknown. Because there is a large class of phys-
ical problems' that are representable by the con-
spicuous characteristic of the nonlinear Schro-
dinger equation, it is of great interest to study
the dynamic evolution of Eq. (1). In this paper
instead of solving Eq. (1), we discuss the results
of computer experiments on a dynamic system
whose long-time asymptotic behavior is repre-
sented by this equation. Thus we can obtain the
dynamic behavior not only of the modulation am-
plitude but also of the wave itself in such a sys-
tem. The problem we treat is a transverse per-
turbation of ions propagating parallel to an ap-
plied magnetic field in a cold plasma. In the lin-
ear regime the perturbation corresponds to the
ion-cyclotron wave (this can also be regarded as
an electron-cyclotron wave by changing the po-
larization and the time constant). We use the
sheet- current model' in which the transverse
motion of the charged particles is represented by
a set of infinite sheet currents arranged perpen-
dicular to the applied magnetic field.

In this case, the coefficients of Eq. (1) can be
shown to be'

C (d~ I-3C k /(dD
~ ' (1+c'k'/&u ')"
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for y representing a wave magnetic field B, as

y =B,/Bo,

and the corresponding growth rate I', is
I" =ImQ = ~n~cp, '. (10)

where aoz and e~ are ion plasma and cyclotron
frequencies, respectively, and Bo is the applied
magnetic field. [For an electron-cyclotron wave
use electron-plasma and electron-cyclotron fre-
quencies and multiply Eq. (3) by the electron-to-
ion ma. ss ratio. ] In deriving Eqs. (3) and (4),
electron dynamics are ignored except for their
effect in providing charge neutrality to be con-
sistent with the numerical model. '

To compare with the numerical result, we
first obtain a. perturbation solution of Eq. (1) by
applying a transformation

y =p'" exp[t'Jodx/P] (6)

From Eq. (9) one can see that for a real K, 0'
becomes negative only when oP &0, which is in

agreement with Eq. (2). The growth rate I' is
proportional to the square of the initial wave am-
plitude yo.

The computer experiment is performed with
periodic boundary condition with the periodic
length L given by

L = 2v/K

The wave number k of the carrier wave is so
chosen that the growth rate I'„, becomes maxi-
mum for a given ratio of k/K, giving

and expanding p and 0:

+ ' expi Kx-Qt .

%e obtain

~o=~o ~ oo=02

g2 P2(K2 ++ 2/P)2 +2+ 4

Hence the maximum growth occurs for

K—= K = cpo(n/P)'i'

(9)

ck/&u~ =1.59. (12)

Other parameters are &u~/&u, =0.629, ~y, ~
(=~B,/

B,~
at t = 0) = 0. 121, k/K, = 4, (p, /po), -0 = 0.4, and

the integration time step is 0.04/to, . The corre-
sponding growth rate I', is 0.023~,. The total
energy change throughout the calculation was
less than 0.2%.

The results of the computer experiment are
shown in Figs. 1 to 3. In Fig. 1 evolution of the

y (with z axis in the direction of the applied mag-
netic field) component of the vector potentia, l of
the wave field A& is plotted as the solid curve.
For illustrative purposes, the results are shown
for two periods. The abscissa is the distance
along z but shifted by v&t, where v& is the group
velocity of the wave, so that the envelope stays
fixed to the frame in the linear regime. The
phase of the carrier wave which seems also
fixed to the frame is accidental in that (v~-v&)t
at these particular times came out to be roughly
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FIG. 1. Variation of wave amplitude A& and energy
jA~ with time and space; results of computer experi-
ment.
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FIG. 2. Change of the depths of modulation. An

explosive growth can be seen in the result of the com-
puter experiment.
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FOURIER ANALYSIS IN TIME (OMEGA-SPACE) FOR CUC) ~80
AT 0 {A), L/4{B), L/2{C) AND AT 3L/4(D)
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FIG. 3. Frequency spectrum of the wave at ~~t =80.
The peak frequency is seen to have been shifted down.

a round number times the carrier wavelength.
For the wave number chosen here, the phase ve-
locity vz is 1.8u&. The thin curve is ~A~ =(A&'
+A ')'". Because the wave is circularly polar-
ized in the linea. r regime, ~A~ represents its en-
velope y. But in the nonlinear regime Q~ starts
to have a fine oscillatory structure indicating the
loss of circular polarization.

We can see from this figure that the envelope
first starts to become steeper in a way which is
similar to the shock. At the same time, the en-
velope shows a gradual growth in amplitude.
This continues until ~,t -40. After this at ~,t
from 40 to 60, the amplitude of the envelope sud-
denly grows very fast, clearly indicating the pro-
cess of the wave trapping. The rate of growth at
this time is much faster than that given by the
perturbation solution, Eg. (9). This can be most
clearly seen in Fig. 2, where the depth of modu-
lation defined as the ratio of the maximum to the
minimum amplitude of the carrier wave is com-
pared for the computer experiment with the per-
turbation solution given by Eels. (6), (7), and (10).
The slightly larger growth rate of the perturba-
tion solution at initial time may originate from
the use of only the growing-mode solution, while
in the experiment both the growing and the decay-
ing modes [negative ima. gina, ry 0 solution of EII.
(9)] should exist.

Another interesting feature of the result can be
seen in the development in the frequency spec-
trum associated with the instability. As is shown

in Fig. 3, at ~,t =80, the peak of the spectrum
was shifted from its initial value of 0.72~ to
0.3~,. The spectrum deviates rather remark-
ably at different points in space owing to the dis-
persive nonlinearity, but the average tendency is
a shift toward lower frequencies. The peak fre-
quency 0.3~, is interesting because, as can be
seen from EII. (4), p changes its sign at c'k'/co~'
= —,

' or at the corresponding frequency ~ =0.25~, .
Hence the frequency is down shifted toward the
critical value for stability. "

We have performed another experiment with a
smaller value of the initial depth of modulation

(p, /p, =0.2) for an extended time scale. In this
case, the time needed to reach to the explosive
state was longer (~,t -90). Beyond this state,
both the carrier wave and the modulation ampli-
tude became jagged and the wave number of the
carrier was shifted down. At ~,t-150, the wave
number, which was four per period at t =0, was
clearly changed to two. No solitary wave shape
was observed in the modulation amplitude through-
out the process, unlike the previous prediction. '
The fact that such a drastic change occurs for
the carrier wave number and its frequency im-
mediately after the explosive state indicates that
the adiabatic approximation that has led to Eq.
(1) becomes invalid in the same time scale as
the variation of the amplitude y itself. Hence
the solution of EII. (1) in its own time scale
seems to be irrelevant as the answer of the de-
velopment of the entire system. Right after the
explosive state, the current sheets were sudden-
ly accelerated in the longitudinal direction indi-
cating a heating of the plasma. The gain of ther-
mal motion caused the damping of the wave ener-
gy, presumably due to a cyclotron damping me-
chanism. The details wi1.1 be published soon.

The author would like to thank Mrs. M. L.
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Brown for reading the manuscript.
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Including electron dynamics, P (=6 ~l6k ) can be
shown to be always negative for an ion-cyclotron wave,
hence the instability (Q. P ) 0) exists for all A values.

For an electron-cyclotron wave Eq. (4) is valid, hence
instability occurs only for 3c'0'l~&') 1 or in terms of

The peaking of the spectrum at 0.3~c may not occur
for the real ion-cyclotron wave because of the differ-
ent dispersion relation, as is mentioned in Ref. 4.
However, for the electron-cyclotron wave this effect
should exist because of the same dispersion relation
as assumed here.
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We use linear response theory to calculate the elementary excitation spectrum of a
dilute hard-sphere Bose gas. Our result differs by a factor 2 ' from the exact result.

The energy spectrum of elementary excitations corresponding to density fluctuations of a many-par-
ticle system is given by the values of energy which correspond to the poles of a generalized suscepti-
bility. ' Recently Singwi et al. ' proposed a self-consistent way of calculating the susceptibility of a
many-electron system which seemed very promising in treating divergent potentials, but its use was
restricted to systems in which the pair distribution function was known in advance. ' The purpose of
this Letter is to apply Singwi's theory to divergent potentials and derive the excitation spectrum from
first principles, i.e., without the use of any parameter but the particle-particle potential and the den-
sity. %e chose the worst possible potential, namely, the hard-sphere interaction, and we take the
particles to form a dilute Bose gas.

As in Ref. 2 we take the susceptibility to be of the form

)(.(q, ~)
l -4(q)X.(q, ~)'

where X, is the noninteracting susceptibility. In the limit of small q, ((q) is given by

g(q) = —
3

~ drg(r) [sin(qr)-qr cos(qr)]
4m dp.o

id'Y 2 d'Y (2)

It is very easy to show that, at zero temperature, the relation between the energy of the excitation
and g(q) is, with e(q) =5'q' j2m and a, density n,

E(q) = Ge(q))'+ 2«(q) I(q))'" = ~(q)/~(q),

the well-known Feynman expression for bosons. ' To calculate g(q) we substitute in Eq. (2) the ha, rd
core for y, putting

dp = lim (-. i)6(r-r, ),

where r, is the hard-core diam. We get for g(q) the following expression:

e(q) = (2~/3q')) fg(r. )~(qr. ) +r.g'(r. )0(qr.)),
where

a(x) = 3 sinx-3x cosx +x' sinx, P (x) = sinx-x cosx.

(4)

We assume, at this point, that g(r ) =g'(r ) =0. Thus, the products ig(r ) and Ag'(r ) are not deter-
mined. To find out what their values are we calculate g(r) and g'(r) from g(q), ' and impose that g(r, )
=g'(r, ) =0, consistent with our previous assumption.
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