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We give a sum rule relating photoproduction to asymptotic electroproduction, and
another electroproduction sum rule which tests for the presence of operator Schwinger
terms.

In this Letter we report two sum rules, which relate integrals over the scale functions' of electro-
production to each other, and to integrals over total photoproduction cross sections. The sum rules
are based on Bjorken's idea of scale invariance, ' the experimental fact' that the electroproduction
structure functions decrease in the momentum-transfer variable q' (for sufficiently large q') if the
mass of the produced hadronic states is held fixed, and on the assumption that the high-energy form
of the imaginary part of the forward Compton amplitude for fixed q' has no term characteristic of a
Regge pole with o((0) =0. Under these circumstances, the sum rule given in Eq. (8a) is valid; and if
we assume in addition that there is no Schwinger term in the connected, covariant forward Compton
amplitude, the sum rule in Eq. (Sb) is also satisfied.

Let J&(x) be the electromagnetic current. The spin-averaged forward Compton amplitude can be
written

T„,=((20,)gd'xe'~ (('I(&„(&)&.(0)),IP&= (('„- . V ) (t. *V.) ~.+( "."-A.—)
The imaginary parts of the T; are related to the structure functions' 5'z of electroproduction by

ImT; = 2mB'~.

That 7'„, is free of unwanted singularities is assured by imposing conditions on the T;; for example,
T, vanishes like q' at q'=0. R', and 8', are related to the cross sections for scattering of transverse
and longitudinally polarized photons, o z and O'I, by

W, = (47('n) '(v+q'/2)err,

W, = —(4v'e) '(v+q'/2)(v' —M'q') 'q'(oT +(x~). (3b)

Here M is the proton mass, q the virtual photon
momentum, v=q p, and a=1/137. Since oI
vanishes at q'= 0,

W, (q', v) = —v'q 'W, (q', v)
q2 + 0

—(4)T'o. )
' vo (v),

where o(v) is the total cross section for real
photoproduction from a proton. Bjorken has
suggested, ' and experiments apparently verify, '
that W, and vR', approach finite functions of the
variable (d = —q'/2 v in the limit of large v and q',

that is'

W, —F,(u),

vW2 —E2((d). (5b)

v, = Mm, + (m, '/2),

The photoproduction cross section o(v) appears~
to have the Regge asymptotic form for large v.
Let us define, therefore, a truncated cross sec-
tion o(v) by

o (v) = 0(v v, )o(v) Q— C„v—
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where the n are the t = 0 intercepts of the leading
Regge trajectories (e.g. , P, P', A, ). If no trajec-
tory crosses o=0 at (=0, then o(v) &0(v ' ')
for large v. Similarly, the behavior of the scale
functions E; in (5) near co=0 should be governed

by the same trajectories as in (6). So we also
define

E,(co) = 0(1—(u)F, (u)) - Q f,„(u (7a)
n &0

F.(~) = ~(I- ~)E.(~)- Zf,.~' (7b)
0. &0

where F,(cd) and &u 'E, (e) vanish faster than co'

as ~ approaches zero.
In terms of the quantities defined above, the

two sum rules are

1+ (2rr'o. ) 'f cr(v)dv= f dcd(u 'F, ((u), (Ba)

[0 & o (p) & o. & ~; -1 & p & 1], (9)

f dcdcd ~F. ,(co) = 2f dcdco 'F, (u&). (Bb)

It is understood that for 0 & v & v„and for v & 1,
0 and the E; are given entirely by the asymptotic
Regge forms in (6) and (7).

The left-hand side of (Ba) is equal to the resi-
due of a fixed pole at o. =0 in the real part of the
forward on-shell Compton amplitude. Damashek
and Gilman' have analyzed the photoproduction
data and determined this residue to lie some-
where between 0.12 and 1.59, with perhaps a pre-
ferred value of about 0.8. Unfortunately, the F;
in (8) are not yet well determined. The available
data' on W, in the region of small ~ (&u & 0.05)
also have small Iq'I (&1 GeV'), and it is doubt-
ful that the scale limit has been attained. We

hope that when the large-angle data are analyzed,
these sum rules can be checked.

If the basic constituents of the proton a11 have
spin -„ it is plausible that o~/or should vanish
in the scale limit, ' and that there should be no

operator Schwinger terms. Conversely, there
is one interesting experimental circumstance
under which the sum rule (Bb) can be checked.
If it is found that oz/cr„-E2(u&) —2cdF, (co)-0 in
the scale limit, then (Bb) is automatically satis-
fied, and there are no operator Schwinger terms.
An early experimental test of the vanishing of
oz/or is quite feasible.

We sketch the derivation of these sum rules,
postponing details to a more complete article.
The amplitude 7', has a Deser, Gilbert, and
Sudarshan (DGS) representation" of the type

dodPh(o, P)
+ 2Pv —o+SE

where h(o, P) is even in P. Scale invariance re-
quires'

J d oh(cr, P) = 0 (10)

V
7'»(v) = ——.7'.(v, q') I,2=., (14)

v' 'd v'o( v')

7T C~ V —V

For the sake of brevity, make the artificial as-
sumption that there are no Regge trajectories
with intercepts above zero, so o = o, and F; =F;.
Insert (12) in (14), and go to the large v limit":

dg —2v&»(v)- „= „-„vW,(q", v)

j.
2f d(d(d -E2(hl). (16)

In the second equality, we have used (5b) and the
fact that E,(&u) is even in cd. On the other hand,
the large v limit of (15) is just

1—2—, dv'cr(v').
7T

(17)

Equating these two expressions leads to the sum
rule in (Ba) under the artificial conditions stated.
It is straightforward, however, to remove this
restriction and allow terms in the asymptotic
form of o(v) which behave like v ' with cr. &0.

E,(u)) = ——,'(u fdo'oBh(o, co)/Sco,

as can be seen by taking the imaginary part of
(9) and using (2) and (5b). We write a subtra. cted
dispersion relation for T, in q' for fixed v:

2q' P" dq"
T,(q', v) = —„... ,

)
vW, (q", v). (12)

—2I 9' &9' 9'

Eventually, we are interested in the region of
large v at q2=0. For large v, scale invariance
allows us to change the upper limit in (12) to 2v,
as follows: For q' &2v, vS'2 is found to be

q~2 2&+V' 0 r2

vW, (q", v) = — doh cr, . (13)
-2V+q 2v

The fact that both the upper and lower limit of
this integral increase linearly with v (for fixed
~'), together with (10) and (11) imply that the
error accrued in making this replacement van-
ishes as v-~. '

The spin-averaged forward Compton amplitude
for real photons can be written in two wayS, in
terms of T„or in terms of the usual dispersion
relations in v:
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The presence of these terms implies that h(o, P)

has parts that go like h (v)P' " for small P;
these contributions to vW, as given by (13) must
be integrated over q" before the limit v- ~ is
performed in Eq. (12). The result of this pro-
cedure is the sum rule for the truncated cross
sections given in Eq. (Ba).

The sum rule in (Bb) follows from a similar
argument. , except that we write an unsubtracted
dispersion relation in q' for T,—v'q T, instead
of the relation given in Eq. (12). The assumption
that no unwanted subtraction constant is neces-
sary is equivalent to the assumption that there
is no Schwinger term in the connected part of
the matrix element. Note that, from Eq. (10),
T, obeys an unsubtraeted dispersion relation in
q'. This is equivalent, from earlier work, ' to
the statement that there is no Schwinger term
associated with T, in the Compton amplitude.
However, the sum rule (Ba) is not affected if it
should turn out that T, needs a subtraction.

The derivation given here can be generalized
to apply when the Compton amplitudes are ex-
pressed in the general form of the DGS repre-
sentation, ' rather than in the simple form typi-
fied by Eq. (9). The details of this derivation,
as well as other applications of those ideas, will
be submitted in a more lengthy article.

Note added in proof. —Professor Roman Jackiw
has informed us that he, R. Van Royen, and

G. B. West have discussed a sum rule similar
to our Eq. (Bb); their derivation is valid only if
I', -2~I', has no Regge poles with o. &0."
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The hadronic cascade of high-energy particles in nuclei is discussed. As the incident
energy of the bombarding particles is increased, a larger fraction of the products of the
first collision strike the second nucleon. In a few successive collisions of relatively
small momentum transfers in which the bombarding mass is increased, it is possible
to double the energy available in the center-of-mass system. This can conceivably be
a very useful analytical tool at high energies.

In the last ten years the subject of multiple
scattering of high-energy particles in nuclei has
received a considerable amount of theoretical
and experimental study. " The interest has
mainly centered on elastic and coherent process-
es. In this note we want to consider the possibil-
ities of the study of inelastic processes arising

from multiple interactions in a complex nucleus.
We are not particularly interested in the usual
sort of nucleonic cascade which flares out later-
ally as it proceeds through the nucleus. As the
energy of the incident particle is increased the
particles associated with the upper vertex, i.e.,
those particles going forward in the center of


