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Dispersion effects in the analysis of high-energy electron-nucleus scattering lower the
cross section obtained from a partial-wave analysis in its minima. At an electron ener-
gy E =750 MeV and momentum transfer q=3.9 fm the correction amounts to about 70/o
for Ca . These dispersion effects may be described by an optical potential whose real
part is determined by the usual static charge distribution, while the small imaginary
part peaks at the nuclear surface with a maximum value of about 20 keV.

The classic experiments' of elastic electron
scattering at momentum transfer q &1 fm ' have
been fitted with a two-parameter Fermi-type
charge distribution p, (x) and give information on
the radius and the surface thickness of the nucle-
us. More recent experiments ' at 400 and 750
MeV with momentum transfers up to 3.4 fm
have shown, however, that even a three-parame-
ter Fermi distribution does not give a satisfacto-
ry fit at higher momentum transfer. Instead the
charge distribution p, (r) has to be modulated by
a small oscillatory function hp(r) in order to re-
produce the experimental cross section. ' The ex-
perimental data for the scattering of 250-MeV
electrons on Ca" have also been explained by El-
ton and Swift, ' who derived the static charge dis-
tribution from single-particle wave functions.
Analyzing the 750-MeV experiment with the same
charge distribution, Wright, Tuan, and Huber
found that the remaining discrepancy may be ac-
counted for by short-range correlations between
the nucleons. ' Thus in the experiments under
consideration the electron is sensitive to rather
small details of the charge distribution.

During the past few years, however, several
authors have stressed the possible importance of
dispersion effects in electron scattering at high
momentum transfer. ' ' This effect is described
by diagrams in which two or more virtual photons
are exchanged between the electron and the nucle-
us, leaving the nucleus virtually excited in the
intermediate state. For numerical reasons pre-
vious calculations have been restricted to lower

electron energies, and only a few discrete nucle-
ar levels have been considered. It is the aim of
this work to remove these limitations and to cal-
culate the dispersion effects for the experiments
at 750 MeV, assuming that the excitation spec-
trum of the nucleus is described by quasielastic
scattering.

If the electron energy is greater than that of all
contributing nuclear resonances, off-mass-shell
effects may be neglected and the diagonal S-ma-
trix element to second order is'

&« = exp(2i&,p")ii —»'g& 'I(&'IH& ~l&&I'],

where the prime on the sum indicates that the
static part of the potential has already been taken
into account to all orders by a phase-shift analy-
sis. Since the electroexcitation spectrum at high
momentum transfer is dominated by the quasi-
elastic peak, i.e. , by scattering on the individual
protons, we replace the excited states by plane-
wave states for the protons. Since the summa-
tion in Eq. (1) runs over all intermediate states,
and the energy loss has been neglected, we ig.-
nore all distortion effects, in particular the fine
structure of the giant resonance at the low-ener-
gy side of the quasielastic peak due to long-range
correlations, and the shift at the high-energy
side due to short-range correlations. Under
these assumptions the S-matrix element for par-
tial wave ~ may be expressed in the following
form:

8„,= exp(2i5, I'")(1—2L, ),
with
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The second term in Eq. (3) subtracts the contri-
bution of the monopole part of the static potential,
which has been taken into account in the partial-
wave analysis. In our approximation the disper-
sion terms only depend on the static charge dis-
tribution; they a.re of order e relative to the
first-order matrix element and proportional to Z,
since we have summed incoherently over the pro-
tons.

Since in carrying out the numerical integration
of the wave function double precision is used (i.e. ,
16 valid decimals are retained), the accuracy of
the phase shifts is mainly limited by the step
width of the numerical integration and by the ac-
curacy of the regular and irregular Coulomb
wave functions, which are matched to the numeri-
cal solutions at a radius of about 8 fm. The lat-
ter problem may be solved by recursion tech-
niques, ' in particular by downward recursion
for the regular Coulomb wave functions. ' With

about nine exact digits for the phase shifts, the
cross section will be given exactly down to the
region of a,bout 10 ' cm' sr '. This ha.s a,iso
been checked by reproducing the Born approxima-
tion in the limit Z -0. In order to evaluate the
second-order term, the Dirac equation is then
integrated to a radius of about 40 fm at 750 MeV;
from there on asymptotic expansions of the elec-
tron wave functions can be used. Furthermore,
it turns out that by replacing the distorted waves

by plane waves, i.e. , spherical Bessel functions,
the correction terms change by only a few per-
cent, even for a nucleus like Ca '. For an actual
calculation we use a shell-model charge distribu-
tion, which has been derived from single-particle
wave functions in a Woods-Saxon potential with

spin-orbit coupling and Coulomb terms. The po-
tential is characterized by the parameters used

by Elton and Swift, which gave a best fit to 250-
MeV elastic scattering. Folding this charge dis-
tribution with a Gaussian proton form factor with

a =0.65 fm we obtain the cross section shown in

Fig. 1 (solid line). Dispersion effects lower the
cross section in the minima (dashed line). The
relative effect, shown in the upper part of Fig. 1,
amounts to 30% at () = 50' and |0Q at () = 62 .
This is in qualitative agreement with previous
results at lower electron energies which take in-
to account only a few intermediate states. ' ' On

the other hand the present experimental errors
at the higher momentum transfer are still much
larger than the dispersion effect, which there-
fore cannot yet be "seen" in such an experiment
even if we knew the "true" static charge distribu-
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FIG. 1. Cross section for ej.as'~~ scattering of 750-
MeV electrons on Ca as a function of scattering an-
gle 8 calculated from the shell-model charge distribu-
tion of Ref. 4 with (dashed line) and without (solid line)
dispersion effects. The upper part of the figure shows
the relative effect of the dispersion terms, (~ cr)lo~.-
The experimental data are from Hef. 3.

tion to start with. Nevertheless one may ask
whether it is possible to simulate the dispersion
effect by a change in the static density parame-
ters. Equivalently, what is the difference be-
tween the charge distribution calculated in a
first-order calculation and the "true" charge dis-
tribution calculated with dispersion effects in-
cluded& Therefore we have computed cross sec-
tions with and without dispersion effect using a
parabolic-Fermi-shape density distribution' with
the parameters which gave a best fit at 250 MeV.
The results are given in the lower part of Fig. 2,
which also shows the region where the cross sec-
tion drops below 10 "cm' sr ' and the calcula-
tion becomes unreliable. Since the dispersion
effect (solid line in the upper part of Fig. 2)
shows up typically at the minima of the cross
section, we were not able to reproduce the same
cross section by a change of the parameters of
the Fermi-type distribution. As far as the order
of magnitude is concerned, the variation z -z
+ 1.5% and w-m+10/g gave a relative effect com-
parable with the dispersion effect on the average
(dashed line in upper part of Fig. 2). Since the
Fermi distribution has to be modulated by a
small oscillatory function, one might also vary
the additional parameters introduced by that func-
tion.
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We think, however, that a change of the density
parameters to account for dispersion effects is
not meaningful for the following reason: The off-
resonance behavior of the electron at high ener-
gies leads to a real second-order correction ~„
or equivalently to the introduction of a small ad-
ditional imaginary scattering phase, while the
changes in the real part of the phase may be ne-
glected. This means that the second-order effect
shows up predominantly in a depletion of the flux
in the elastic channel. Indeed, Eg. (1) guarantees
the unitarity of the S matrix up to second-order
terms. While changes in the real part of the
phase may be accounted for by variations in the
static charge distribution, the occurrence of an

imaginary phase leads to the existence of an
imaginary part in the potential. Therefore, it is
inconsistent to fit the dispersion effects by a
change of the real charge distribution alone.

The correct way to take into account the disper-
sion effect is therefore to introduce an optical po-
tential U = V+iW, whose real part ~ is the usual
electrostatic potential. The imaginary part W
will have the following properties: (1) It will be
negative, and since it depends on the transition
potentials for the virtual excitations, ~W~ will
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FIG. 2. Cross section for elastic scattering of 750-
MeV electrons on Ca as a function of scattering an-
gle 8 calculated from a parabolic-Fermi-shape charge
distribution with c =3.6685, z = 0.5839, and ao = 0.1017
fm (Ref. 3). In the lower part the solid line shows the
result without, the dashed line with, dispersion cor-
rections. The upper part of the figure gives the rela-
tive effect of the dispersion (solid line) and the relative
effect on the cross section obtained by varying z- z
+1.5% and w-m+10% (dashed line).

have a long-range decreasing behavior outside of
the nucleus. (2) Since the correction terms 6,
are about three orders of magnitude smaller than
the potential scattering phases 6„ the imaginary
part will be much smaller than the real part of
the potential. Using the Born-approximation
formula

4, = —fd(kr) (kr)'[j q'(k~)+j ~ '(kr)] W(~)/&, (5)

we were able to explain the dispersion effects
with an imaginary potential W(r), which increas-
es as x for small radii and decreases as x ' out-
side of the nucleus. For Ca" this imaginary po-
tential has a maximum value of about 20 keV at
the nuclear radius and is small compared with
the real potential V, whose maximum va, lue is

~
V(0)~ =10 MeV at the origin.
From the point of view of the optical model it

is immediately clear that the real part of the ad-
ditional phase, which is due to higher order ef-
fects, can be neglected in the high-energy case:
Replacing V —V +iW, the wave numbers of the
electron become complex, k-k, +iy. Since (E
-V)' = (ckk)'+m'c', we obtain for the real part
ko = k[1+O(y'/k2) + O(m'/k')], and the correction
terms can be neglected since ~W(x)( «mc'«

~
V(r)~

«E. The same is also true for the phases.
The numerical calculations were performed at
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The half-life of F has been determined as 11.03+0.06 sec and P branches have been
measured in the decay of Na . By combining with information on Na and Si it is de-
duced that for the A=20 mirror decays to the Ne 2+ first-excited state, (ft) l(ft)
=0.933+0.032 or 1.062+0.037, while in the A=25 system (ft)+/(ft) =1.187+0.076 for
P decay to all states below 3 MeV.

The simplest expectation for mirror P decays
is that they should have identical f& values. It
has, however, been known for some time that the
ft value for N" decay to the ground state of C"
is some 10% greater than that for the mirror de-
cay of B". Careful analysis' suggests that the
discrepancy may well be a significant one, not
explicable in terms of electromagnetic, second-
forbidden, isospin-mixing, and binding-energy
corrections, and that its resolution may lie in
the reality of second-class currents, specifically
the induced tensor interaction, "i.e. , that the P
interaction does not respect G parity. ' Before
accepting this fundamental conclusion one must
be sure both that the known corrections have been
properly evaluated and that there are not others
of a "structural" nature that may fluctuate from
case to case.

It is therefore important to investigate other
eases of mirror decay to see whether or not they
fall systematically into line with A = 12. If the
discrepancy in f& values was due solely to an in-
duced tensor term its magnitude, for light nuclei
and 8'p»1, should be proportional to Wp +Wp
and approximately state independent. "We have
carried out measurements on the systems & = 20
and 25 that enable us to extend the mirror test to

these cases. We find that 4 =25 shows a large
departure from mirror symmetry in the same
sense as for & = 12; the evidence on A = 20 is con-
flicting but suggests that the departure from mir-
ror symmetry could have the opposite sense.
These results emphasize the caution that must be
used in interpreting the failure of mirror sym-
metry in terms of second-class currents.

The P decay of F'0 is 99.92% 'to the first ex-
cited state of Ne" at 1.63 MeV. ' The P decay of
Na" has been extensively investigated' by mea-
surement of its P rays and the subsequent y decay
and e decay of Ne . The Na' ha.lf-life is report-
ed' as 408+ 6 msec and the P branch to the first
excited state of Ne'o as 90.0%. However, in view
of technical problems in the I8-ray measurements
we have preferred to make our analysis in terms
of the superallowed transition of Na' to its ana-
log in Ne' at 10.270+0.009 MeV. ' For the Fer-
mi part of this transition we have taken' ft = 3060
+ 20 sec; for the Gamow-Teller part we have
based ourselves on local systematics and taken
the range ft = 6.3 x10'-~ sec; this leads to ft
= 2990+ 70 sec for the two together. For the Na '
mass excess we have taken" 6.87+ 0.04 MeV; we
then use 7.35+0.35 as the factor by which decay
of Na."to all +-unstable states of Ne' exceeds


